期刊文献+

基于二维相关性的图像分割及快速递推算法 被引量:1

Two-dimensional Correlation Based Image Segmentation and Its Fast Recursive Algorithm
下载PDF
导出
摘要 基于二维直方图提出了二维相关性的阈值分割算法。首先,通过邻域平均得到原始图像的平滑图像,由原始图像和平滑图像构造二维直方图,然后根据相关性最大准则选择最佳的二维阈值向量。由于该方法同时考虑了图像像素的灰度信息及其空间邻域信息,与一维阈值相比能得到更好的分割效果。同时为降低二维阈值算法的复杂性,提出了快速递推算法。该算法将二维相关性的计算写成递推形式,减少了大量的重复计算,使得算法的复杂性从O(L4)降低到O(L2),计算时间大为减少,有利于该算法的实时应用。 A two-dimensional correlation image thresholding algorithm is proposed on the basis of the two-di- mensional histogram. First, a smoothed image is obtained using the neighbor smoothing technique. The two- dimensional histogram is constructed using the gray value and average gray value of a pixel. The two-dimen- sional threshold is obtained according to the maximum correlation criterion. Compared to the one-dimensional case, the two-dimensional correlation thresholding method can get better segmentation results, because it con- siders not only image-pixel gray information but also spatial neighbor information. To reduce computation com- plexity, a fast recursive algorithm is presented. In the fast recursive algorithm, the computation of two-dimen- sional correlation is written in the recursive form. Many repeated calculations are avoided. The computation complexity is reduced from O(L^4) to O(L^2). The computation time is also reduced dramatically. This facilitates the recursive algorithm application in the real-time image processing system.
出处 《铁道学报》 EI CAS CSCD 北大核心 2007年第5期60-63,共4页 Journal of the China Railway Society
基金 国家自然科学杰出青年科学基金(60525303) 河北省教育厅基金(2002209) 燕山大学博士基金资助项目(B243)
关键词 图像分割 相关性 快速递推算法 image segmentation correlation fast recursive algorithm
  • 相关文献

参考文献12

  • 1Pal N R,Pal S K.A review on image segmentation techniques[J].Pattern Recognition,1993,26(9):1277-1291.
  • 2Otsu N.A threshold selection method from gray-level histogram[J].IEEE Trans.on Systems,Man and Cybernetic,1979,9:62-66.
  • 3Kapur J N,Sahoo P K,Wong A K C.A new method for gray-level picture thresholding using the entropy of the histogram[J].Computer Vision,Graphics and Image Processing,1985,29:273-285.
  • 4Tsai W H.Moment-preserving thresholding:a new approach[J].Computer Vision,Graphics and Image Processing,1985,29:377-393.
  • 5Yen J C,Chang F J,Chang S Y.A new criterion for automatic multilevel thresholding[J].IEEE Trans.on Image Processing,1995,4(3):370-378.
  • 6Abutaleb A S.Automatic thresholding of gray-level pictures using two-dimensional entropy[J].Computer Vision,Graphics and Image Processing,1989,47:22-32.
  • 7Brink A D.Thresholding of digital images using two-dimensional entropies[J].Pattern Recognition,1992,25(8):803-808.
  • 8刘健庄,栗文青.灰度图象的二维Otsu自动阈值分割法[J].自动化学报,1993,19(1):101-105. 被引量:357
  • 9Sahoo P K,Arora G.A thresholding method based on two-dimensional Renyi's entropy[J].Pattern Recognition,2004,37:1149-1161.
  • 10Chen W T,Wen C H,Yang C W.A fast two-dimensional entropic thresholding algorithm[J].Pattern Recognition,1994,27(7):885-893.

共引文献356

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部