期刊文献+

应用插值小波解第二类Fredholm积分方程

Solve Fredholm Integral Equation of the Second Kind Using Interpolating Wavelet
下载PDF
导出
摘要 引入了一种解第二类Fredholm积分方程的新的数值算法,该数值方法利用插值小波变换将积分方程转化成线性方程组并求解,经过变换后得到的线性方程组的矩阵是一个稀疏的带状矩阵.数值算例表明,与传统算法比较该方法计算量小,并且具有较高的精度. This paper presents a new method for solving Fredholrn integral equation of the second kind. This numerical method converts the integral equation to a system of linear equations by using 1 nterpolat - ing wavelet transform, and the matrix we get is a sparse matrix. From the numerical examples we show that the proposed method has high accuracy and is more efficient compared with traditional methods.
作者 叶磊
出处 《枣庄学院学报》 2007年第5期49-52,共4页 Journal of Zaozhuang University
关键词 第二类FREDHOLM积分方程 插值小波 小波变换 Fredholm integral equation of second kind interpolating wavelet wavelet transform
  • 相关文献

参考文献4

二级参考文献9

  • 1[1]B. Alpert , G. Beylkin, R. Coifman. V. Rokhlin. Wavelet-like bases for the fast solution of secondkind integral equations[J]. SIAM J. Sci. Comput. 1993, 14: 15~184
  • 2[2]G. Beylkin, R. Coifman, V. Rokhlin. Fast wavelet tranaforms and numerical algorithms 1[J]. Comm. Pure Appl. Math. 1991, 46: 141~183
  • 3[3]R. Chan, F. R. Lin, C. F. Chan, A Fast Solver for Fredholm Equations of the Second Kind with Weakly Singular Kernels[J]. Numerical Mathematics, 2002, 10, 13~36
  • 4[4]R. Chan, F. R. Lin, W. F. Ng, Fast Dense Matrix Method for the Solution of Integral of the Second Kind[J]. Numerical Mathematics-A Journal of Chinese Universities, English Series, 1998, 7(1): 105~120
  • 5[5]G.H. Golub, C. F. Van Loan. Matrix Computations, third edition[M]. Baltimore and London, The Johns Hopkins University Press, 1996
  • 6[6]L. Greengard, V. Rokhlin. A fast algorithm for particle simulations[J]. J. Comput. Phys, 1987, 73: 325~348
  • 7[7]L. Reichel. Fast solution methods for Fredholm integral equations of the second kind[J]. Numer, Math, 1989,57, 719~736
  • 8陈汉夫,林福荣,吴荣辉.FAST DENSE MATRIX METHOD FOR THE SOLUTION OF INTEGRAL EQUATIONS OF THE SECOND KIND[J].Numerical Mathematics A Journal of Chinese Universities(English Series),1998,7(1):105-120. 被引量:2
  • 9童创明,袁乃昌,洪伟.Lanczos技术加速第二类Fredholm方程的快速求解[J].国防科技大学学报,2002,24(1):44-48. 被引量:1

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部