期刊文献+

配合法制备K_4Nb_6O_(17)及其光催化活性的研究

Preparation of K_4Nb_6O_(17) by citric-complex method and itsphotocatalytic activity for water splitting into hydrogen
下载PDF
导出
摘要 通过配合法合成了铌酸盐K4Nb6O17,采用X-射线衍射、扫描电镜等对K4Nb6O17进行了结构和形貌表征.在I-为电子给体、RuO2为助催化剂的情况下,研究RuO2-K4Nb6O17在波长约为360 nm紫外辐射下分解水的产氢活性,讨论了制备温度和I-离子浓度对K4Nb6O17光催化分解水产氢活性的影响,且对配合法与高温固相法制得的K4Nb6O17进行了光催化性能的比较.研究发现,在I-浓度为15 mmol/L,pH=10以及波长约为360 nm紫外光照射条件下,配合法制备的RuO2负载量为0.5%的K4Nb6O17光催化产生氢气的最大速率为1 090μmol/(L.h). The K4Nb6O17 photocatalyst for water splitting into H2 was prepared by the citriccomplex method and was characterized by powder X-ray diffraction and scanning electron microscope. The photocatalytic activity of K4Nb6O17 was studied with I^- as electron donor and RuO2 as promoter catalyst under 360 nm UV irradiation. The effect of sintering temperature and the concentration of I^- as electron donor on the photocatalytic activity of K4Nb6017 was also investigated. Comparison of the photocatalytic activity of K4Nb6O17 prepared by the citric-complex and solid-state reaction method was made. The maximum water splitting rate was 1 090 μmol/(L · h) when K4Nb6O17 prepared by citric-complex method wasused as photocatalyst (with 0.5% loaded RuO2) and I^- with a concentration of 15 mmol/L as electron donor at pH 10 under UV radiation.
出处 《长沙理工大学学报(自然科学版)》 CAS 2007年第3期97-101,共5页 Journal of Changsha University of Science and Technology:Natural Science
关键词 铌酸盐 K4Nb6O17 配合法 光催化活性 氢气 niobate K4Nb6O17 citric-complex method photocatalytic hydrogen
  • 相关文献

参考文献14

  • 1[1]Honda K,Fujishima A.Electrochemical photolysis of water at a semiconductor electrode[J],Nature,1972(238):37-38.
  • 2杨亚辉,陈启元,尹周澜,李洁.光催化分解水的研究进展[J].化学进展,2005,17(4):631-642. 被引量:15
  • 3[3]Yasunobu L,Toyoyuki K,Kazunori S.Photoeatalytic activity of alkali-metal titanates combined with Ru in the decomposition of water[J].Journal of Physical Chemistry,1991,(95):4059-4063.
  • 4[4]Zou Z,Ye J,Sayama K,et al.Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst[J].Nature,2001,(414):625-627.
  • 5[5]Moon S C,Mametauka H,Tabata S,et al.Photocatalytic production of hydrogen from water using TiO2 and B/TiO2[J].Catalysis Today,2000,(58):125-132.
  • 6[6]Lee S G,Lee S,Lee H I.Photocatalytic production of hydrogen from aqueous solution containing CN-as a hole scavenger[J].Applied Catalysis A:General,2001,(207):173-181.
  • 7[7]Ogura S,Kohno M,Sato K,et al.Photocatalytic activity for water decomposition of RuO2-combined M2Ti6O13 (M= Na,K,Rb,Cs)[J].Applied Surface Science,1997,(121/122):521-524.
  • 8[8]Kudo A,Sayama K,Tanaka A,et al.Nickel-loaded K4Nb6O17 photocatalyst in the decomposition of water into H2 and O2:structure and reaction mechanism[J].Journal of Catalysis,1989,(120):337-352.
  • 9[9]Chung K,Park D.Photocatalytic decomposition of water over cesium-loaded potassium niobate photocatalysts[J].Journal of Molecular Catalysis A:Chemical,1998,(129):53-58.
  • 10[10]Sayama K,Yase K,Arakawa H.Photocatalytic activity and reaction mechanism of Pt-intercalated K4Nb6O17 catalyst on the water splitting in the carbonate salt aqueous solution[J].Journal of Photochemistry and Photobiology A:Chemistry,1998,(114):125-135.

二级参考文献7

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部