期刊文献+

基于HHT法的地震地面运动局部谱密度估计 被引量:5

ESTIMATION OF LOCAL SPECTRAL DENSITY OF EARTHQUAKE GROUND MOTION BASED ON HHT THEORY
下载PDF
导出
摘要 采用能反映时频非平稳特性的时变谱密度(局部谱密度)来描述地震地面运动是非常必要的。本文给出了利用HHT估计地震地面运动局部谱密度的方法。从理论上比较了HHT、STFT和多重过滤法等局部谱密度的估计方法,然后通过具体算例,对理论分析进行了验证。指出利用HHT法来估计局部谱密度在精度和速度方面都有很好的优势,可以作为一种有效的局部谱密度估计方法,这有利于局部谱密度在地震动模型化和结构随机响应分析等方面的应用。 It is necessary to describe earthquake ground motion with local spectral density which is time-dependent and can reflect the non-stationary characteristics. The method using HHT to estimate local spectral density is proposed. Comparisons of estimating precision and speed are firstly carried out theoretically among HHT, STFT and Multifilter. Some numerical examples are evaluated to validate the theoretical results. It is concluded that HHT has great advantages for local spectral density estimation due to its higher precision and faster speed than those of the other two methods so that it is an effective method to evaluate local spectral density. Based on HHT, it is convenient and efficient to apply local spectral density to many aspects of earthquake engineering, such as earthquake ground motion modeling, structural random response analysis.
出处 《振动与冲击》 EI CSCD 北大核心 2007年第10期126-131,共6页 Journal of Vibration and Shock
基金 国家自然科学基金重点项目(50538050)
关键词 经验模态分解 HILBERT-HUANG变换 非平稳过程 局部谱密度估计 平稳度 empirical mode decomposition(EMD) Hilbert-Huang Transformation(HHT), non-stationary random process, local spectral density estimation, stationary level
  • 相关文献

参考文献9

  • 1Huang N E,Shen Z,Long S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proc.R.Soc.Lond.A,1998,454:903-995.
  • 2钟佑明,秦树人.希尔伯特-黄变换的统一理论依据研究[J].振动与冲击,2006,25(3):40-43. 被引量:55
  • 3陈换过,闫云聚,姜节胜,刘芹.HHT在复合材料机翼盒段结构小损伤检测中的应用[J].振动与冲击,2006,25(3):81-84. 被引量:6
  • 4闫志浩,范进,左晓宝.应用Hilbert变换判断框架结构非线性的方法[J].振动与冲击,2006,25(1):70-72. 被引量:5
  • 5Priestly M B.Power spectral analysis of non-stationary random process[J].J.Sound and Vibration,1967,6:86-97.
  • 6Mark W D.Spectral analysis of the convolution and filtering of non-stationary stochastic processes[J].J.Sound and Vibration,1970,11:19-63.
  • 7Husid R L.Analisis de Terremotos:Analisis General[J].Revista del ID1EM,1969,Santiago Chile,8 (1):21-42.
  • 8Kameda,Hiroyuki.Evolutionary spectra of seismogram by multifilter[J].J.Engng.Mech,ASCE,1975,101(6):787-801.
  • 9大崎顺彦著,吕敏申,谢礼立,译.地震动的谱分析入门[M].北京:地震出版社,1980.

二级参考文献23

  • 1周晚林,王鑫伟.Hilbert变换在压电智能结构冲击定位中的应用[J].振动与冲击,2004,23(3):124-127. 被引量:8
  • 2杨宇,于德介,程军圣.基于Hilbert边际谱的滚动轴承故障诊断方法[J].振动与冲击,2005,24(1):70-72. 被引量:78
  • 3杨宇,于德介,程军圣.基于EMD与神经网络的滚动轴承故障诊断方法[J].振动与冲击,2005,24(1):85-88. 被引量:144
  • 4程军圣,于德介,杨宇.Hilbert-Huang变换端点效应问题的探讨[J].振动与冲击,2005,24(6):40-42. 被引量:46
  • 5Maeri S F,et al.Neural network approach to detection of changes in structural parameters[J].Journal of Engineering Mechanics,ASCE,1996,122(4):350-360.
  • 6Smyth A W.Analytical and experimental studies in nonlinear system identification and modeling for structural control[D].University of Southern California,1998.
  • 7Worden K,et al.Nonlinearity in structural dynamics[M].Institute of Physics Publishing Bristol and Philadelphia.UK,2001.
  • 8Mohammad K S,Tomlinson G R.A simple method of accurately determining the apparent damping in non-linear structures[C].Proc.7th Int.Modal Analysis Conf.(Las Vegas)(Society for Experimental Mechanics),1989.
  • 9Feldman M,Non-linear system vibration analysis using Hilbert transform-Ⅰ.Free vibration analysis method 'Freevib'[J].Mechanical Systems and Signal Processing,1994,8(2):119-127.
  • 10Feldman M.Non-linear system vibration analysis using Hilbert transform-Ⅱ.Forced vibration analysis method 'Forcevib'[J].Mechanical Systems and Signal Processing,1994,8(3):309-318.

共引文献70

同被引文献42

引证文献5

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部