期刊文献+

基于支持向量机的激光成像雷达地形重采样

Terrain re-sampling of imaging lidar based on support vector machines
下载PDF
导出
摘要 针对机载三维激光成像雷达测量地形高程的特点,提出了一种基于最小平方支持向量机和Shepard的激光成像雷达扫描的地形重采样方法。该方法利用支持向量机是基于结构风险最小化准则,对带有噪声的数据拟合方面具有较好的泛化能力的优点,结合Shepard的局部插值能力,使重建的地形具有局部失真小、总体保持最优的特点。仿真实验结果达到了较高的地形测量精度。 According to the advantage of three-dimensional imaging lidar measuring terrain altitude, a terrain re-sampling method for imaging lidar based on Least Square-Support Vector Machines (LS-SVM) and Shepard is presented. The method has better generalization ability for data fitting with noise by adopting support vector machine method based on the principle of structural risk minimization. Combined with the local interpolation ability of Shepard method, re-sampling terrain has the features of low local distortion and best total effect. The emulation results show the validity and practical value of the method.
出处 《光电工程》 EI CAS CSCD 北大核心 2007年第10期59-65,共7页 Opto-Electronic Engineering
基金 国家863高技术研究发展计划资助项目
关键词 激光成像雷达 地形重建 支持向量机 Shepard方法 imaging lidar topographic reconstruction support vector machines Shepard method
  • 相关文献

参考文献14

  • 1蔡喜平,韩权,陈锺贤,黄建明.DPSS激光雷达距离成像的研究[J].激光与红外,2001,31(1):16-18. 被引量:2
  • 2Greer Donald R, Fung Irene, Shapiro Jeffrey H. Maximum-Likelihood Multiresolution Laser Radar Range Imaging [J]. IEEE Trans. on Image Processing, 1997, 6(1): 37-46.
  • 3杨昭,孙东松,李强.成像激光雷达大气消光系数的反演方法[J].红外与激光工程,2004,33(3):239-242. 被引量:19
  • 4Vapnik V. The Nature of Statistical Learning Theory [M]. New York: Springer, 1995.
  • 5Vapnik V. Statistical Learning Theory [M]. New York: Wiley, 1998.
  • 6崔伟东,周志华,李星.支持向量机研究[J].计算机工程与应用,2001,37(1):58-61. 被引量:88
  • 7Suykens J A K, Vandewalle J. Nonlinear Modeling: Advanced Black-box Techniques [M]. Boston: Kluwer Academic Publishers, 1998.
  • 8Suykens J A K. Weighted Least Squares Support Vector Machines: Robusmess and Sparse Approximation [J]. Neuroeomputing, 2002, 48: 85-105.
  • 9阎辉,张学工,李衍达.支持向量机与最小二乘法的关系研究[J].清华大学学报(自然科学版),2001,41(9):77-80. 被引量:60
  • 10Chua K S. Efficient Computations for Large Least Square Support Vector Machine Classifiers [J]. Pattern Recognition Letters, 2003, 24: 75-80.

二级参考文献26

  • 1王怡斐,王蔚然.半导体激光雷达成像系统中接收机工作方式的分析[J].激光与红外,1993,23(3):41-44. 被引量:1
  • 2陈德煌.机载障碍告警激光雷达[J].电光与控制,1994,1(1):41-43. 被引量:1
  • 3付伟.军用激光技术的发展现状[J].电光与控制,1996,3(1):23-29. 被引量:8
  • 4吴杰.光电信号检测[M].哈尔滨:哈尔滨工业大学出版社,1990.159-183.
  • 5[1]Vapnik V.The Nature of Statistical Learning Theory.New York:Springer-Verlag,1995
  • 6[2]Cortes CVapnik V.Support Vector Networks.Machine Learning,1995;20:273~297
  • 7[3]Osuna E,Freund R,Girosi F.Training Support Vector Machines:An Application to Face Detection.In:Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition,New York:IEEE,1997:130~136
  • 8[4]Dumais S,Platt J,Heckerman D,Sahami M.Inductive Learning Algorithms and Representations for Text Categorization.In:Proceedings of the 7th International Conference on Information and Knowledge Management,1998
  • 9[5]Joachims T.Text Categorization with Support Vector Machines:Learning with Many Relevant Features.In:Proceedings of the 10th European Conference on Machine Learning,1998
  • 10[6]Courant R,Hilbert D.Methods of Mathematical Physics. Volume 1,Berlin:Springer-Verlag,1953

共引文献163

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部