期刊文献+

基于矩阵体积度量的二维PCA人脸识别(英文)

Two dimensional PCA using matrix volume measure in face recognition
下载PDF
导出
摘要 本文提出一种符合高维几何空间理论的矩阵体积度量分类准则用于人脸识别。基于二维PCA的人脸识别方法主要研究的是特征提取部分,对后继的分类识别研究不多。基于二维PCA的人脸识别方法中典型的分类准则是比较特征向量的欧氏距离,而新方法比较的是矩阵的体积。在ORL和AR人脸库上的实验表明,所提出的矩阵体积度量较传统距离度量分类准则更有效。 A novel classification measure based on matrix volume according to the high dimensional geometry theory is proposed for face recognition. Many two dimensional PCA (2DPCA)-based face recognition methods almost pay much attention to the feature extraction, and the classification measure is little investigated. The typical classification measure used in 2DPCA is the sum of the Euclidean distance between two feature vectors in feature matrix, called traditional Distance Measure (DM). However, this proposed method is to compute the matrix volume. To test its performance, experiments are done based on ORL and AR face databases. The experimental results show the Matrix Volume Measure (MVM) is more efficient than the DM in 2DPCA-based face recognition
作者 孟继成 夏雷
出处 《光电工程》 EI CAS CSCD 北大核心 2007年第10期83-87,144,共6页 Opto-Electronic Engineering
关键词 二维PCA 距离度量 矩阵体积度量 人脸识别 two dimensional PCA distance measure matrix volume measure face recognition
  • 相关文献

参考文献18

  • 1Yang J, Zhang D, Frangi A F, et al. Two-dimensional PCA: A new approach to appearance-based face representation and recognition [J]. IEEE Trans. on Pattern Anal. Math. Intell, 2004, 26(1): 131-137.
  • 2Johnson L R, Jain A K. An efficient two-dimensional FFT algorithm [J]. IEEE Trans. on Pattern Anal. Math. Intell, 1981, 3(6): 698-701.
  • 3Kaplan L M, Murenzi R. Pose estimation of SAR imagery using the two dimensional continuous wavelet transform [J]. Pattern Recognition Letters, 2003, 24(14): 2269-2280.
  • 4Turk M, Pentland A. Eigenfaces for Recognition [J]. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86.
  • 5Wang L W, Wang X, Zhang X R, et al. The equivalence of two-dimensional PCA to line-based PCA [J]. Pattern Recognition Letters, 2005, 26(1): 57-60.
  • 6Hong Z Q. Algebraic feature extraction of image for recognition [J]. Pattern Recognition, 1991, 24(3): 211-219.
  • 7Chen S, Zhu Y L, Zhang D Q, et al. Feature extraction approaches based on matrix pattern: MatPCA and MatFLDA [J]. Pattern Recognition Letters, 2005, 26(8): 1157-1167.
  • 8Scholkopf Bernhard, Smola Alexander, Muller Klaus-Robert. Nonlinear component analysis as a kernel eigenvalue problem [J]. Neural Computation, 1998, 10(5): 1299-1319.
  • 9Kong H, Li X C, Eam K T, et al. Generalized 2D Principal Component Analysis [A]. Proe. IEEE Inter. Joint Conf. Neural Networks [C]. Montraeal, Canada: IEEE, 2005:108-113
  • 10Kong H, Li X C, Earn K T, et al. Generalized 2D Principal Component Analysis [A],Proc, IEEE Inter. Joint Conf. Neural Networks[C].Montraeal, Canada: IEEE, 2005: 108-113.

二级参考文献2

  • 1Ben-Israel A.A volume associated with m×n matrices[J].Lin Algeb and its Appl,1992,167:87-111.
  • 2Ben-Israel A.Greville T N E.Generalized Inverses:Theory and Applications[M].New York:John & Wiley,1974.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部