摘要
提出一种基于间断自适应高斯马尔可夫随机场(DA-GMRF)模型的无监督图像分割方法。针对MRF模型中的过平滑问题,利用边缘信息构造能量函数,定义了一种DA-GMRF模型。利用灰度直方图势函数自动确定分类数及分割阈值,进行多阈值分割,得到DA-GMRF模型中标记场的初始化,用Metroplis采样器算法进行标记场的优化,实现了图像的无监督分割。实验结果表明了该方法的有效性。
An unsupervised image segmentation method basedon DA-GMRF (Discontinuity- Adaptive Gaussian Markov Random Field) model is proposed. To solve the drawback of over-smoothness in the MRF model, a kind of DA-GMRF model is defined, in which the edge information of image is used to construct corresponding energy functions. In order to start the unsupervised image segmentation, a multi-threshold image segmentation algorithm is presented based on potential function of gray histogram to initialize the label field. This algorithm can determine region number and multi-thresholds automatically. At last, Metroplis sampler algorithm is adopted to optimize the label field. Segmentation experiments on several images show that the algorithm proposed is effective.
出处
《光电工程》
EI
CAS
CSCD
北大核心
2007年第10期88-92,共5页
Opto-Electronic Engineering
关键词
图像分割
马尔可夫随机场
间断自适应
合成图像
image segmentation
Markov random field
discontinuity-adaptive
composite image