期刊文献+

基于模糊连接度的多发性硬化症MR图像自动分割算法 被引量:7

Automated Segmentation of Multiple Sclerosis Lesions Using Fuzzy Connectedness for MR Images
下载PDF
导出
摘要 多发性硬化症(MS)是一种严重威胁中枢神经功能的疾病,利用磁共振成像技术能够无损伤地检出其病灶。为了自动地对多发性硬化症病灶进行分割,提出了基于模糊连接度的分割算法,实现了种子点的自动选取。作为多发性硬化症分割的预处理,针对脑部MR FLAIR图像的特征,基于区域增长方法,还提出了脑部组织提取算法。通过对临床患者MR图像的分割实验,表明该分割算法能够比较准确地分割多发性硬化症病灶,其分割效果明显好于模糊C-均值聚类算法和基于马尔可夫场模型的分割算法。该算法还具有无监督、运算速度快、稳健性好等优点,能够应用于多发性硬化症的临床辅助诊断。 Multiple sclerosis (MS) is an inflammatory demyelinating disease that damages central nervous system. Magnetic resonance imaging (MRI) is increasingly being used to assess the progression of the disease. This paper presented an algorithm for fully automated MS lesion segmentation of clinical MR FLAIR brain images. The proposed algorithm was based on fuzzy connectedness and the seed could be selected automatically, A brain tissue extraction algorithm was also presented using region expanding. Experimental results showed that the proposed algorithm displayed more powerful performance than fuzzy c-means (FCM) clustering algorithm and conventional Markov random field (MRF) model-based ones as well. This algorithm is expected to be applied in clinic.
作者 李彬 陈武凡
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2007年第5期664-668,共5页 Chinese Journal of Biomedical Engineering
基金 国家重点基础研究发展规划"973"(2003CB716102)。
关键词 图像分割 脑组织提取 模糊连接度 多发性硬化症 image segmentation brain tissue extraction fuzzy connectedness multiple sclerosis
  • 相关文献

参考文献9

  • 1Li Lihong, Li Xiang, Lu Hongbing, et al. MRI volumetric analysis of multiple sclerosis: methodology and validation[J]. IEEE Trans. on Nuclear Science, 2003, 50 (5): 1686- 1692.
  • 2Leemput KV, Maes F, Vandermeulen D, et al. Automated segmentation of multiple sclerosis lesions by model outlier detection[J]. IEEE Trans. on Medical Imaging, 2001, 20 (8): 677-688.
  • 3David R, Gerard S, Herve D, et al. Automatic Detection and Segmentation of Evolving Processes in 3D Medical Images: Application to Multiple Sclerosis [ J ]. Medical Image Analysis, 2002, 6 (2): 163- 179.
  • 4Ardizzone E, Pirrone R, Gambino O, et al. Two channels fuzzy C- means detection of multiple sclerosis lesions in multispectral MR images[ A ], IEEE ICIP 2002[ C ]. New York : IEEE, 2002. 345 - 348.
  • 5Boudraa AO, Dehak SM, Zhu Yuemin, et al. Automated segmentation of multiple sclerosis lesions in multispectral MR imageing using fuzzy clustering [ J ]. Computers in Biology and Medicine, 2000, 30 ( 1 ) : 23 - 40.
  • 6Udupa JK, Samarasekera S. Fuzzy connectedness and object definition: Theory, algorithms, and applications in image segmentation[ J ]. Graphical Models and Image Processing, 1996, 58 (3) :246 - 261.
  • 7Udupa JK, Saha PK. Fuzzy connectedness and image segmentation [J]. Proceedings of the IEEE, 2003:1649 - 1669.
  • 8Saha PK, Udupa JK, Conant E. Breast Tissue Density Quantification Via Digitized Mammograms [ J ]. IEEE Trans. on Medical Imaging, 2001, 20 (8): 792- 803.
  • 9Smith SM. BET: Brain extraction tool [ R]. Oxford University, 2000.

同被引文献68

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部