摘要
根据WS小世界模型的思想,构建了从规则网络到随机网络的一系列扩散网络图,通过虚拟采纳个体的决策过程,研究了网络结构与性质对创新微观采纳和宏观扩散的影响。不同于已往的研究,本文将创新采纳与创新扩散统一起来,运用复杂网络的方法,研究了网络结构与创新扩散之间的动态相互关系。数值模拟结果表明:存在介于规则网络和随机网络之间的小世界扩散网络;外部因素和内部因素共同决定一个成功的扩散过程;网络的簇系数决定扩散的最终水平,而网络平均距离决定扩散速度;网络个体间的异质性程度越大,越不利于创新扩散。
According to the idea of WS Small - World Model, this paper construct a series of diffusion network graphs which range from regular graph to stochastic graph. By simulating the decision-making process of adoption individuals, we study the influence of network structure on innovation micro-adoption and macro-diffusion. Unlike the previous studies, this paper unites the innovation adoption and diffusion as a whole and probes into the dynamic relationship between network structure and innovation diffusion by using the method of complex network. The numerical simulation results illustrate : there is a small - world diffusion network between regular and stochastic graph; the external and internal factors decide a successful diffusion process together; the network cluster coefficient decides the diffusion ultimate level and network average length determines the diffusion velocity ; the extent to the network individuals' heterogeneity is in inverse proportion to the ultimate innovation adoption rates.
出处
《科学学研究》
CSSCI
北大核心
2007年第5期1018-1024,共7页
Studies in Science of Science
关键词
创新扩散
网络结构
数值模拟
小世界网络
聚集系数
平均距离
innovation diffusion
network structure
numerical simulation
small- world network
cluster coefficient
average length