期刊文献+

带特殊重试时间的M/M/1重试排队模型的一个特征值(英文) 被引量:5

An Eigenvalue of M/M/1 Retrial Queueing Model with Special Retrial Times
下载PDF
导出
摘要 证明0是对应于带特殊重试时间的M/M/1重试排队模型主算子的几何重数为1的特征值,0是此主算子的共轭算子的特征值. The results of this paper prove that 0 is an eigenvalue of the operator corresponding to M/M/1 retrial queueing model with special retrial times with geometric multiplicity one and 0 is an eigenvalue of its adjoint operator.
出处 《应用泛函分析学报》 CSCD 2007年第3期193-203,共11页 Acta Analysis Functionalis Applicata
基金 The Major Project of the Ministry of Education of China (205180) Excellent Youth Reward Foundation of the Higher Education Institution of Xinjiang (XJEDU2004E05) Xinjiang University Science Foundation
关键词 重试排队 特征值 几何重数 共轭算子 retrial queue eigenvalue geometric multiplicity adjoint operator
  • 相关文献

参考文献6

  • 1Choi B D,Park K K,Pearce C E M.An M/M/1 retrial queue with control policy and general retrial times[J].Queueing Systems,1993,14:275-292.
  • 2Gomez-Corral A.Stochastic analysis of a single server queue with general retrial times[J].Naval Research Logistics,1999,46:561-581.
  • 3Yang T,Li H.The M/G/1 retrial queue with the server subject to starting failures[J].Queueing Systems,1994,16:83-97.
  • 4Yang T,Posner M J M,CTempleton J G,Li H.An approximation method for the M/G/1 retrial queue with general retrial times[J].European Journal of Operational Research,1994,76:552-562.
  • 5Grier N,Massey W A,McKoy T,Whitt W.The time-dependent Erlang loss model with retrials[J].Telecommunication Systems,1997,7 (1-3):253-265.
  • 6Geni Gupur.Semigroup Method for M/G/1 Retrial Queue with General Retrial Times[M].International Journal of Pure and Applied Mathematics,2004,12.

同被引文献16

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部