期刊文献+

分布协同交互式遗传算法及其在群体决策中的应用 被引量:4

A Distributed Co-Interactive Genetic Algorithm and Its Applications to Group Decision-making
下载PDF
导出
摘要 针对交互式遗传算法单机实现模式存在的局限性,本文提出一种分布协同交互式遗传算法,并介绍了算法实现的关键技术.基于群体决策满意度和用户评价偏好,给出了共享个体数量确定方法和共享个体的选择方法.还提出了合理的评价平台和有效的决策评价指标以及隐含的信息交互方式等.为减轻用户疲劳,基于个体相似度,提出一种类适应度近似策略.最后基于服装的色彩设计问题,给出实验结果,以验证该算法的可行性.  A distributed co-interactive genetic algorithm is proposed in this paper to overcome the disadvantages of interactive genetic algorithms implemented in the single PC environment,and the key technologies to implement the algorithm are given.Based on the satisfaction degree of group decision and the users' preference,methods are pre-sented to determine the number and selection method of sharing individuals.An appropriate evaluating platform,the effective decision-making evaluation indices and the implicit way to interactive information are also presented.Based on individual similarities,an approximation strategy of similar fitness is put forward to reduce user fatigue.At last,considering the color design of dress,the experiment results are given to validate the feasibility of the proposed algorithm.
出处 《信息与控制》 CSCD 北大核心 2007年第5期557-561,共5页 Information and Control
基金 国家自然科学基金资助项目(60304016) 中国矿业大学青年科研基金资助项目
关键词 交互式遗传算法 分布式 协同进化 群体决策 interactive genetic algorithm distributed co-evolution group decision-making
  • 相关文献

参考文献7

  • 1Takagi H.Interactive evolutionary computation:Fusion of the capabilities of EC optimization and human evaluation[J].Proceedings of the IEEE,2001,89(9):1275-1296.
  • 2Tokumaru M,Muranaka N,Imanishi S.Virtual Stylist project-Examination of adapting clothing search system to user's subjectivity with interactive genetic algorithms[A].Proceedings of the 2003 Congress on Evolutionary Computation[C].Piscataway,NJ,USA:IEEE,2003.1036-1043.
  • 3Biles J A,Anderson P G,Loggi L W.Neural network fitness functions for a musical IGA[A].Proceedings of the International Symposium on Intelligent Industrial Automation and Soft Computing[C].Berlin,Germany:Springer,1996.39-44.
  • 4Brintrup A M,Ramsden J,Tiwari A.Integrated qualitativeness in design by multi-objective optimization and interactive evolutionary computation[A].Proceedings of the 2005 Congress on Evolutionary Computation[C].Piscataway,NJ,USA:IEEE,2005.2154-2160.
  • 5周勇,巩敦卫,郝国生,郭一楠,孙晓燕.交互式遗传算法基于NN的个体适应度分阶段估计[J].控制与决策,2005,20(2):234-236. 被引量:22
  • 6Lee J Y,Cho S B.Sparse fitness evaluation for reducing user burden in interactive genetic algorithm[A].Proceedings of the IEEE International Conference on Fuzzy Systems[C].Piscataway,NJ,USA:IEEE,1999.998-1003.
  • 7Huber G P.Issues in the design of group decision support systems[J].MIS Quarterly,1984,8(3):195-204.

二级参考文献5

  • 1Takagi H. Interactive evolutionary computation:Fusion of the capabilities of EC optimization and human evaluation[J]. Proc of the IEEE, 2001,89 (9) : 1275-1296.
  • 2Biles J A, Anderson P G, Loggi L W. Neural network fitness functions for a musical IGA[A]. Proc of the Int ICSC Symposium on Intelligent Industrial Automation and Soft Computing[C]. UK, 1996;B39-44.
  • 3Lee Joo-young, Cho Sung-bae. Sparse fitness evaluation for reducing user burden in interactive genetic algorithm [A]. 1999 IEEE Internatil Fuzzy Systems Conference Proceedings [C]. Seoul, 1999, 2:998-1003.
  • 4Sugimoto F, Yoneyama M. An evaluation of hybrid fitness assignment strategy in interactive genetic algorithm[A]. Proc of the 5th Australasia-Japan Joint Workshop on Intelligent and Evolutionary Systems[C].Dunedin, 2001 :62-69.
  • 5王上飞,王胜惠,王煦法.结合SVM的交互式遗传算法及其应用[J].数据采集与处理,2003,18(4):429-433. 被引量:14

共引文献21

同被引文献53

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部