期刊文献+

弱FC-KKM映射与聚合不动点定理 被引量:6

Weakly FC-KKM Mappings and Collectively Fixed Point Theorems
下载PDF
导出
摘要 在FC-空间中引入和研究了弱FC-KKM映射和具有弱FC-KKM性质的映射类.并在非紧局部FC-空间中对具有弱FC-KKM性质的映射建立了一些新的不动点定理和聚合不动点定理.作为应用,给出了聚合不动点定理在矢量平衡问题组中的应用. The weakly FC-KKM mappings and the class of mappings with the weakly FC-KKM property are introduced and studied in FC-space. Some new fixed point theorems and eolleetively fixed point theorems involving the mapping with the weakly FC-KKM property is established in noncompact locally FC- spaces. By using the collectively fixed point theorem, the existence theorems of some new system of vector equilibrium problems are obtained.
作者 郑莲
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第5期10-13,共4页 Journal of Southwest China Normal University(Natural Science Edition)
基金 长江师范学院资助项目
关键词 局部FC-空间 弱FC-KKM映射 弱FC-KKM性质 聚合不动点定理 矢量平衡问题组 locally FC-spaces weakly FC-KKM mappings weakly FC-KKM property collectively fixed-point theorems system of vector equilibrium problems
  • 相关文献

参考文献8

  • 1丁协平.局部FC-空间内Himmelberg型不动点定理的推广(英文)[J].四川师范大学学报(自然科学版),2006,29(1):1-6. 被引量:13
  • 2Lin L J,Ko C J and Park S,Coincidence theorems for set-valued mappings with G-KKM property on generalized convex space[J].Discuss Math Differential Incl.,1998,18:69-85.
  • 3Balaj M,Weakly G-KKM mappings,G-KKM property and minimax inequalities[J].J Math Anal Appl,2004,294:237-245.
  • 4Park S.Generalizations of Ky Fan's matching theorems and their applications[J].J Math Anal Appl,1989,141:164-176.
  • 5Wu X,Li A.Approximate selection theorems in H-spaces with applications[J].J Math Anal Appl,1999,231:118-132.
  • 6Chang T H,Yen C L,KKM property and fixed point theorems[J].J Math Anal Appl,1996,203:224-235.
  • 7Ding X P.Abstract and generalizations of Himmelberg type fixed-point theorems[J].Computers Math Applic,2001,41:497-504.
  • 8Lin L J,Yu Z T.On some equilibrium problems for multimaps[J].J Comput Appl Math,2001,129:171-183.

二级参考文献20

  • 1丁协平.局部FC-空间内的Himmelberg型不动点定理(英文)[J].四川师范大学学报(自然科学版),2005,28(2):127-130. 被引量:23
  • 2Ben-El-Mechaiekh H,Chebbi S,Flornzano M,et al.Abstract convexity and fixed points[J].J Math Anal Appl,1998,222:138-150.
  • 3Park S,Kim H.Coincidence theorems for admissible multifunctions on generalized convex spaces[J].J Math Anal Appl,1996,197:173-187.
  • 4Park S,Kim H.Foundations of the KKM theory on generalized convex spaces[J].J Math Anal Appl,1997,209:551-571.
  • 5Park S.Continuous selection theorems in generalized convex spaces[J].Numer Funct Anal Optim,1999,20(5,6):567-583.
  • 6Wu X,Li A.Approximate selection theorems in H-spaces with applications[J].J Math Anal Appl,1999,231:118-132.
  • 7Yuan G X Z.KKM Theory and Applications in Nonlinear Analysis[M].New York:Marcel Dekker,Inc,1999.
  • 8Horvath C D.Contractibility and generalized convexity[J].J Math Anal Appl,1991,156:341-357.
  • 9Tarafdar E.Fixed point theorems in locally H-convex uniform spaces[J].Nonlinear Anal,1997,29:971-978.
  • 10Park S.Fixed point theorems in locally G-convex spaces[J].Nonlinear Anal,2002,48:869-879.

共引文献12

同被引文献57

引证文献6

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部