期刊文献+

各向异性介质中二阶弹性波方程模拟PML吸收边界条件 被引量:9

SIMULATION OF PML ABSORBING BOUNDARY CONDITION WITH SECOND-ORDER ELASTIC WAVE EQUATION IN ANISOTROPIC MEDIA
下载PDF
导出
摘要 提出了基于弹性波动方程的二阶双曲系统的一种新的弹性波动方程模拟的最佳匹配层(PML)吸收边界条件。对于二阶系统方程,PML吸收边界条件模型通常是以四分裂位移参量来构建的,这种方法需要求解时间的三阶导数,且占用较多的计算空间;作为另一种选择,非分裂的PML算法可以扩展到二阶系统中,但它需要求解二重时间积分。新方法可克服或简化上述问题。用交错网格有限差分方法加最佳匹配层边界条件新算法的模拟方法用数值模型作了试验,结果证实了此方法的有效性。 A new alternative perfectly matched layer (PML) absorbing boundary condition is developed to attenuate the artificial boundary reflections generated in numerical simulation of the second-order elastic wave equation. The second-order equation can be described by displacement, which is more appropriate than the first-order one. Its PML condition conventionally needs to split the displacement into four parts, which occupies a large a- mount of memory and requires solving a third-order differential equation in time. As for the other choice, non-splitting PML method may be applied to the second-order equation, but it requires solving the dual integral in time. The new method can solve or simplity the above problems. Finally, a staggered-grid finite difference method with this PML condition is used to simulate an anisotropic media model and the results show that the method is efficient.
出处 《大地测量与地球动力学》 CSCD 北大核心 2007年第5期54-58,共5页 Journal of Geodesy and Geodynamics
基金 973项目"碳酸盐岩缝洞型油藏开发基础研究"(2006CB202402)
关键词 模拟 最佳匹配层 吸收边界 二阶波动方程 各向异性介质 simulation, perfectly matched layer(PML) , absorbing boundary, second-order elastic wave equation, anisotropic media
  • 相关文献

参考文献13

  • 1Clayton R and Enquist B.Absorbing boundary conditions for acoustic and elastic wave equations[J].Bulletin of the Seismological Society of America,1977,67:1 529-1 540.
  • 2Reynolds A C.Boundary conditions for the numerical solution of wave propagation problems[J].Geophysics,1978,43(6):1 099-1 110.
  • 3Cerjan C,Kosloff D,Kosloff R and Reshef M.A nonreflecting boundary condition for discrete acoustic and elastic wave equation[J].Geophysics,1985,50(4):705-708.
  • 4Berenger J P.A perfectly matched layer for the absorption of electromagnetic waves[J].Journal of Computational Physics,1994,114:185-200.
  • 5Hastings F,Schneider J B and Broschat S L.Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation[J].Journal of the Acoustic Society of America,1996,100(5):3 061 -3 069.
  • 6Collino F and Tsogka C.Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media[J].Geophysics,2001,66 (1):294-307.
  • 7Zeng Y Q,He J Q and Liu Q H.The application of the perfectly matched layer in numerical modeling of wave propagation in poroelastic media[J].Geophysics,2001,66(4):1 258-1 266.
  • 8Komatitsch D and Tromp J.A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation[J].Geophysical Journal International,2003,154:146-153.
  • 9Tsili W and Xiaoming T.Finite-difference modeling of elastic wave propagation:a nonsplitting perfectly matched layer approach[J].Geophysics,2003,68(5):1 749-1 755.
  • 10Becache E,Fauqueux S and Joly P.Stability of perfectly matched layers,group velocities and anisotropic waves[J].Journal of Computational Physics,2003,188:399 -433.

同被引文献120

引证文献9

二级引证文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部