期刊文献+

基于图像内容检索技术的矿石识别系统

Mineral Discrimination System Based on Image Content Retrieval Technology
下载PDF
导出
摘要 介绍利用图像内容检索技术来实现矿石的计算机自动识别系统的主要算法。其中主要应用了图像的颜色和纹理两种底层特征,对系统的检索算法提出了两种混合特征检索算法,对于特殊领域的图像检索技术有一定的指导意义。 Introduces the main algorithm of the image retrieval which uses content of image to achieve the computer find ore automaticlly. The algorithm uses two low features of image, colour and texture. Gives the two search algorithm of the omnibus character.
作者 牛晓强
机构地区 赣州卫生学校
出处 《现代计算机》 2007年第9期39-41,共3页 Modern Computer
关键词 图像检索 颜色特征 纹理特征 矿石图像 混合特征 Image Retrieval Colour Character Texture Character , Ore Image Omnibus Character
  • 相关文献

参考文献9

  • 1章锍晋 林行刚.多媒体技术发展与市场分析[J].多媒体世界,1995,(5):3-8.
  • 2Moores C N.Data Coding Applied to Mechanical Organization of Knowledge.am.doc.1951,2:20-32
  • 3章锍晋.基于内容的多媒体信息检索(CMIR)与国际标准MPEG-7.第九届全国图像图形学术会议论文集,1998
  • 4章锍晋著.基于内容的视觉信息检索.北京:科学出版社,2003
  • 5曹奎,冯玉才,曹忠升,张军.彩色图象的联合分布表示及检索技术[J].中国图象图形学报(A辑),2001,6(11):1084-1088. 被引量:4
  • 6Funt B V,Finlayson G D.Color Constant Color Indexing.IEEE Transaction on Partern Analysis and Machine Intelligence,1995,17(5):522-529
  • 7Gevers T,Smeulder A W M.Evaluating Color and Shape Invariant Image Indexing of Consumer Photography.In:Proceedings of Visual'96:The First International Conference on Visual Information Systems,Melboume,austalia,1996:254-261
  • 8Gevers T.Smeulder A W M,Content-Based Image Retrieval by Viewpoint-Invariant Image Indexing.Image and Vision Computing.1999.17(7):475-488
  • 9章毓晋.图像工程(中册)-图像处理和分析.北京:清华大学出版社,1999

二级参考文献15

  • 1[1]Sethi L K. Coman I, Day B et al. Color-WISE: A system for image similarity retrieval using color [A]. In: Proceedings Storage and Retrieval for Image and Video Database VI[C], San Jose. 1998:140~147.
  • 2[2]Ma W Y, Manjunath B S. NeTra:A toolbox for navigating large image databases[A]. In: Proceedings ICIP'97[C], New York,1997:568~571.
  • 3[3]Niblack W, Barber R, Equiz W et al. The QBIC project:Querying images by content using color, texture and shape[R].Research Report 9203. IBM Research Division, Almaden Research Center. 1993.
  • 4[4]Smith J R, Chang S F. VisualSEEK: A fully automated contentbased image query system[EB/OL]. From http:∥www. str.cclumbia. edu ~jrsmith html/pubs/acmm96/node2. html.
  • 5[5]Pentland A. Picard R W, Sclaroff S. Photobook: Tools for content-based manipulation of image databases [A]. In:Proceedings Storage and Retrieval for Image and Video Databases II[C]. San Jose, 1994:34~47.
  • 6[6]Swain M J. Ballard D H. Color indexing [J]. International Journal of Computer Vision, 1991,7(1):11~32.
  • 7[7]Androutsos D. Plataniotis K N, Venetsanopoulos A N. A novel vector-based approach to color image retrieval using a vector angular-based distance measure[J]. Computer Vision and Image Understanding, 1999,75(1/2) :46~58.
  • 8[8]Richman R M. Stonham T J. Content-based image retrieval using color tuple histograms[A]. In: Proceedings Storage and Retrieval for Still Image and Video Databases IV, SPIE, 1996,2670:2~7.
  • 9[9]Pass G. Zabih R. Histogram refinement for content based image rezrieval [A]. In: Proceedings of the 3rd IEEE Workshop on Application of Computer Vision [C ], Sarasota, Florida, 1996:96 ~ 102.
  • 10[10]Huang J, Kumar S R. Mitra M et al. Image indexing using correlograms [A]. In: Proceedings of IEEE Computer Vision and Pattern Recognition[C], San Juan, Puerto Rico, 1997:762~768.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部