期刊文献+

多传感器信息融合在摩擦焊机上的应用研究 被引量:2

Application and research of multi-sensor information integration on friction welder
下载PDF
导出
摘要 多传感器信息融合系统即将来自多个传感器或多源的信息进行综合处理,从而得到更为准确、可靠的结论。多传感器信息融合系统是对人类综合处理复杂问题的一种功能模型。从工业实际应用出发提出了一种用于摩擦焊机控制的多传感器信息融合系统模型,使焊接工件的质量因受液压系统的波动(液压油的温度、液压泵的不稳定及老化、电磁阀等是造成系统压力波动的主要原因)的影响降到最低,提高了焊件的最优率。 Multi-sensor information integration system comprehensively processes the information from several sensors or multi-souree, then gets more accurate reliable conclusion.Multi-sensor information integration system is a function model,which comprehensively processes complex problems.In the view of practical industrial application,this paper raises a multi-sensor information integration system model for friction welder control ,minimizes the influence of hydraulic pressure system's fluctuationon in the quality of welding workpiece (temperature of hydraulic oil,instability and aging of hydraulic pump and electromagnetic valve are main reasons for fluctuation of system pressure), and improves the optimal rate of workpiece.
出处 《电焊机》 2007年第10期29-31,共3页 Electric Welding Machine
关键词 多传感器信息融合 神经网络 工业控制 摩擦焊机 multi-sensor information integration neural network industrial control friction welder
  • 相关文献

参考文献3

二级参考文献12

  • 1Fang J X,Talor H F,Choi H S. Fiber-optic fabry-perot flow sensor[ J ]. Microware and Optical Technology Letters, 1998,18 ( 3 ) : 209-211.
  • 2Graf D H, Lalonde W R. Neuroplanners for hand/eye coordination[A]. Proc Int Cord Neural Networks[C]. Washington D C:IEEE, 1989.Ⅱ-534-Ⅱ-548.
  • 3Harris C J, Moore C G. Intelligent control: Aspect of fuzzy logic and neural networks[A]. World Scientific[C]. 73 Lynton Mead,London, N20 - 8DH, 1993:76 - 87.
  • 4Bauzil G, Briot M, Ribes P. A navigation subsystem using ultrasonic sensors for the mobile robot Hilare[A]. 1st Int Conf on Robot Vision and Sensory Control[C]. Stanford-upon-Avon, UK,1981:47 - 58.
  • 5Alonzo Kelly. Adaptive prediction for aut: vehides[R].Technical Report, CMU-RI-TR-94-18, CS of CMLI, 1994:1 -30.
  • 6Moshe Kam, XiaoXun Zhu, Paul Kalata. Sensor f:on for mobile robot navigation[ J ]. Proc of the IEEE, 1997,85 ( 1 ) : 108 - 119.
  • 7Thomas Hellstrōm. Autonomous navigation for forest machines[R]. Technical Report, UMINF 02 - 13 ISSN - 0348 - 0542 Umea University,2002.1 - 60.
  • 8Hagras H, Callaghan V, CoUey M. Outdoor mobile robot learning and adaptation [ J ]. IEEE Robotics & Automation Magazine,2001,8(3):53-69.
  • 9Reynolds R G. Robust estimation of covarian: matrices [ J ].IEEE Trans Automat Control, 1990,35 (9) : 1047 - 1051.
  • 10Pacini P J, Kosko B. Adaptive fuzzy systems for target tracking[ J ]. Intelligent Systems Engineering, 1992,1( 1 ) : 3 - 21.

共引文献44

同被引文献21

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部