期刊文献+

噪声数据集上的边界点检测算法 被引量:3

Boundary Points Detecting Algorithm for Clusters in Noisy Dataset
下载PDF
导出
摘要 为了有效检测聚类的边界点,提出了结合对象的密度及其Eps-邻域中数据的分布特点进行的边界点检测技术和边界点检测算法——BOUND。实验结果表明,BOUND能在含有不同形状、大小簇的噪声数据集上有效地检测出聚类的边界点,并且执行效率高。  In order to detect boundary points of clusters effectively,a technique making use of objects’ density and distribution feature in its Eps-neighborhood to detect boundary points,and a boundary points detecting algorithm named BOUND(detecting boundary points of clusters in noisy dataset) is developed.Experimental results show that BOUND can detect boundary points in noisy dataset containing different shapes and sizes clusters effectively and efficiently.
作者 岳峰 邱保志
出处 《计算机工程》 CAS CSCD 北大核心 2007年第19期82-84,共3页 Computer Engineering
关键词 边界点检测 Eps-邻域 密度 boundary points detection Eps-neighborhood density
  • 相关文献

参考文献5

  • 1HANJW KAMBERM 范明 孟小峰 译.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 2Ester M, Kriegel H P, Sander J. A Density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[C]//Proc. of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, Oregon.1996,226-231.
  • 3Guha,Rastogi R, Shim K.CURE: an Efficient Clustering Algorithm for Large Database[C]//Proceedings of the ACM SIGMOD International Conference on Management of Data, Seattle, Washington. 1998,73-84.
  • 4Agrawal R, Gehrke J, Gunopulos D, et al. Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications[C]//Proceedings of the ACM SIGMOD International Conference on Management of Data, Seattle, Washington. 1998,94-105.
  • 5Xia C Y, Hsu W, Lee M L, et al. BODER: Efficient Computation of Boundary Points[J].IEEE Transaction on Knowledge and Data Engineering,2006,18(3):289-303.

共引文献52

同被引文献29

  • 1邱保志,沈钧毅.网格聚类中的边界处理技术[J].模式识别与人工智能,2006,19(2):277-280. 被引量:13
  • 2秦拯,张玲,李娜.改进的PageRank在Web信息搜集中的应用[J].计算机研究与发展,2006,43(6):1044-1049. 被引量:12
  • 3邱保志,张西芝.基于网格的参数自动化聚类算法[J].郑州大学学报(工学版),2006,27(2):91-93. 被引量:14
  • 4邱保志,沈钧毅.基于扩展和网格的多密度聚类算法[J].控制与决策,2006,21(9):1011-1014. 被引量:25
  • 5Xia C Y, Hsu W, Lee M L, et al. BODER: Efficient Computation of Boundary Points [ J ]. IEEE Transaction on Knowledge and Data Engineering, 2006, 18 (3) : 289-303.
  • 6Erhar R, Hong-Hai D. Data Cleaning: Problems and Cur- rent Approaches [ J ]. IEEE Data Engineering Bulletin, 2000,23(4) : 3-13.
  • 7Bhaduri K, Matthews B L, Giannella C R. Algorithms for Speeding up Distance-based Outlier Detection [ C ]// Proc. of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. [ S. l. ] : ACM Press, 2011.
  • 8Witten I H, Frank E, Hall M A. Data Mining Practical Machine Learning Tools and Techniques[ M]. 3rd ed. [ S. l. ] : Morgan Kaufmann, 2011.
  • 9Guha, Rastogi R, Shim K. CURE: an Efficient Clustering Algorithm for Large Database [ C ] //Proceedings of the ACM SIGMOD International Conference on Management of Data, Seattle. Washington: [ s. n] ,1998: 73-84.
  • 10Qiu B Z, Yue F, Shen J Y. BRIM: An Efficient Boundary Points Detecting Algorithm [ C ]// Proc of the 11 th Pacific- Asia Conference on Knowledge Discovery and Data Mining. China,Nanjing: [s. n. ], 2007: 761-768.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部