期刊文献+

基于临界特征点的图像匹配算法 被引量:4

Image Matching Algorithm Based on Critical Feature Points
下载PDF
导出
摘要 基于特征的图像匹配相关算法尽管已经十分普遍并得到广泛应用,但特征的提取容易受噪声影响。该文提出了一种用尺度空间下的临界特征点对图像进行匹配的方法。该方法采用尺度空间下的临界特征点来描述图像的灰度特征,对光照和噪声具有一定的鲁棒性。考虑到不同尺度下特征点对视觉影响的不同,算法用PTD距离对带权重的图像的特征点集进行匹配。由于PTD距离满足三角不等式规则,该算法适合于在大量数据库中快速检索及识别物体。实验证明了该算法的有效性。  Algorithms based on image features are very popular and widely used in image matching.However,the feature extraction process is often sensitive to noises.This paper presents an image matching algorithm using critical feature points in space-scale,which represent image gray-level feature.The algorithm is robust to the illumination intensity and noises.For the purpose of comparing distance between weighted feature points,the proportional transportation distance is used.Because PTD obeys the triangle inequality,the algorithm is suitable for efficient object retrieval and recognition in large database.Experiment result confirms the efficiency.
出处 《计算机工程》 CAS CSCD 北大核心 2007年第19期173-174,182,共3页 Computer Engineering
关键词 临界特征点 尺度空间 图像匹配 critical feature points scale-space image matching
  • 相关文献

参考文献11

  • 1Witkin A E Scale-space Filtering[C]//Proc. of Int.l Joint Conf. on Artificial Intelligence, Karlsruhe, West Germany. 1983,1019-1022.
  • 2Mokhtarian F, Abbasi S, Kittler J. Efficient and Robust Retrieval by Shape Content Through Curvature Scale Space[C]//Proc.of International Workshop on Image Databases and Multimedia Search, Amsterdam, The Netherlands. 1996,35-42.
  • 3Liu S. Shape Matching Using Dynamic Programming in Scale-space[C]//Proceedings of the 4th IASTED International Conference on Visualization, Imaging, and Image Processing, Marbella. 2004,787-791.
  • 4石旭利,张兆扬.一种基于运动对象的形状编码新算法[J].电子学报,2004,32(1):42-45. 被引量:4
  • 5Lindeberg T. Edge Detection and Ridge Detection with Automatic Scale Selection[R]. Department of Numerical Analysis and Computing Science, Royal Institute of Technology, Technical Report: ISRN KTH NA/P-96/06-SE, 1996.
  • 6Lindeberg T. Feature Detection with Automatic Scale Selection[J]. International Journal of Computer Vision, 1998, 30(2): 79-116.
  • 7Laptev I, Lindeberg T. Tracking of Multi-state Hand Models Using Particle Filtering and a Hierarchy of Multi-scale Image Features[C]// Proceedings of the 3rd International Conference on Scale Space and Morphology in Computer Vision, Vancouver, Canada. 2001.
  • 8Yee Leung, Zhang Jiangshe, Xu Zongben. Clustering by Scale-space Filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(12): 1396-1410.
  • 9Kanters E Lillholm M, Duits R, et al. On Image Reconstruction from Multiscale Top Points[C]//Proceedings of the 5th Intemational Conference on Scale Space, Hofgeismar, Germany. 2005.
  • 10Kanters F, Platel B, Florack L, et al. Content Based Image Retrieval Using Multiscale Top Points a Feasibility Study[C]//Proceedings of the 4th International Conference on Scale Space, Isle of Skye, UK. 2003.

二级参考文献1

共引文献3

同被引文献26

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部