期刊文献+

基于GA/SVM的微阵列数据特征的选择与分类 被引量:3

Feature Selection and Classification of Microarray Gene Expression Data Using Genetic Algorithm and Support Vector Machine
下载PDF
导出
摘要 微阵列数据样本小、维度高的特点给数据分析造成了困难,而主基因的挑选又十分的重要。该文采用遗传算法挑选主基因,其中,用k最邻居距离作为模式识别方法,用支持向量机构造了诊断系统,用不同核函数进行预测分类性能测试。在经典的白血病数据集上,对34个样本的测试集的分类准确率为100%。  Microarray data has the feature of high dimensions and small samples,which causes difficultis to the analysis.Therefore,it is important to select or discover informative genes from microarray data.This paper presents an informative genes selecting method based on genetic algorithm(GA),in which k nearest neighbors(KNN) is implied as a recognition method.Support vector machine(SVM) is used to construct a tumor classifier system and different kernel functions are used to test the performances.This method has been applied to a classic microarray data set(leukemia data) and achieved 100% classification accuracy on the test data set.
出处 《计算机工程》 CAS CSCD 北大核心 2007年第19期204-206,共3页 Computer Engineering
关键词 微阵列数据 基因表达 遗传算法 k最邻居距离 支持向量机 microarray data gene expression genetic algorithm k nearest neighbors support vector machine(SVM)
  • 相关文献

参考文献5

  • 1Golub T R, Slonim D K, Tamayo P, et al. Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring[J]. Science.1999,286(5439): 531-537.
  • 2Li L, Pederson L G, Thomas A D, et al. Computational Analysis of Leukemia Microarray Expression Data Using the GA/KNN Method[C]//Proc. of Critical Assessment of Microarray Data Analysis. 2001,81-95.
  • 3Holland J H. Adaptation in Natural and Artificial Systems[M]. Michigan: the University of Michigan Press, 1975.
  • 4Vapnik V. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1995.
  • 5Yoo C K, Vanrolleghem P A. Interpreting Patterns and Analysis of Acute Leukemia Gene Expression Data by Multivariate Statistical Analysis[C]//Proc. of European Symposium on Computer Aided Process Engineering, Lisbon. 2004.

同被引文献21

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部