期刊文献+

In_(0.5)Ga_(0.5)As/In_(0.5)Al_(0.5)As应变耦合量子点的形貌和光学性质 被引量:3

Morphologic and optical properties of In_(0.5)Ga_(0.5)As/In_(0.5)Al_(0.5)As strain-coupled quantum dots
下载PDF
导出
摘要 提出了利用分子束外延方法生长In0.5Ga0.5As/In0.5Al0.5As应变耦合量子点,并分析量子点的形貌和光学性质随GaAs隔离层厚度变化的特点。实验结果表明,随着耦合量子点中的GaAs隔离层厚度从2 nm增加到10 nm,In0.5Ga0.5As量子点的密度增大、均匀性提高,Al原子扩散和浸润层对量子点PL谱的影响被消除,而且InAlAs材料的宽禁带特征使其成为InGaAs量子点红外探测器中的暗电流阻挡层。由此可见,选择合适的GaAs隔离层厚度形成InGaAs/InAlAs应变耦合量子点将有益于InGaAs量子点红外探测器的研究。 In0.5Ga0.5As/In0.5Al0.5As strain-coupled quantum dots (QDs) grown by molecular beam epitaxy method is reported and the dependences of their morphological and optical properties on the GaAs separation layer are investigated. With increasing the thickness of GaAs separation layer from 2 nm to 10 nm, the areal density of In0.5Ga0.5As QDs is increased, their uniformity is also improved. The influences of aluminum atom diffusion and wetting layer on the photoluminescence spectrum are eliminated. Additionally, the wider band gap of InAlAs enables it to act as blocking layer of the dark current in InGaAs quantum dot infrared photodetectors (QDIPs).The InGaAs/InAlAs strain-coupled quantum dots are useful to the research of InGaAs QDIPs.
出处 《红外与激光工程》 EI CSCD 北大核心 2007年第5期705-707,714,共4页 Infrared and Laser Engineering
基金 中国航天科工集团三院科技创新基金资助项目(HT3Y8358200504)
关键词 量子点 应变耦合 光荧光谱 Quantum dot Strain-coupled Photoluminescence
  • 相关文献

参考文献16

  • 1陈伯良.红外焦平面成像器件的重大应用[J].红外与激光工程,2005,34(2):168-172. 被引量:25
  • 2陈伯良.红外焦平面成像器件发展现状[J].红外与激光工程,2005,34(1):1-7. 被引量:55
  • 3RYZGH V.The theory of quantum-dot infred phototransistors[J].Semicond Sci Technol,1996,11:759-765.
  • 4MITIN V V,PIPA V I,SERGEEV A V,et al,High-gain quantum-dot infrared photodetector[J].Infrared Phys & Tech,2001,42:467-472.
  • 5CHAKRABARTI S,Stiff-ROBERTS A D,SU X H,et al.High performance mid -infrared quantum dot infrared photodetectors[J].J Phys D:Appl Phys,2005,38:2135-2141.
  • 6Krishna Sanjay,Forman Darren,Annamalai Senthil,et al.Demonstration of a 320 ×256 two-color focal plane array using InAs/InGaAs quantum dots in well detectors[J].Appl Phys Lett,2005,86:193501(1-3).
  • 7RYZHII V.Negative differential photoconductivity in quantum dot infrared photodetectors[J].Appl Phys Lett,2001,78:3346-3348.
  • 8JAMIE P.Evaluation of the fundamental properties of quantum dot infrared detectors[J].J of Appl Phys,2002,91:590-4594.
  • 9PARK S K,TATEBAYASHI J,YANG T,et al.InAs/AlAs quantum dots with InGaAs insertion layer:dependence of the indium composition and the thickness[J].Physica E,2005,26:138-142.
  • 10PIERZ K,MIGLO A,HINZE P,ct al.Photoluminescence study of InAs/AlAs quantum dots[J].Phys Stat Sol (b),2001,224:119-122.

二级参考文献36

  • 1Rotolante R A.Why the IR detector market is in flux[J].Laser Focus Word, 1999,35(10):65.
  • 2Kadri Vural, Lester J Kozlowski, Donald E Cooper,et al. 2048× 2048 HgCdTe focal plane arrays for astronomy applications[A].SPIE[C]. 1999,3698.24-35.
  • 3Rockwell Scientific. ROIC reference table[EB/OL]. http://www.rsc.rockwell. com/mctfpa, 2004 -09 -24.
  • 4Arvind I D'Souza,Larry C Dawson, Dan J Berger, et al. HgCdTe multispectral infrared FPAs for remote sensing applications[A].SPIE [C]. 1998,3498.192 -202.
  • 5Montroy J T, James D Garnett, Scott A Cabelli, et al. Advanced imaging sensors at Rockwell Scientific Company[A]. Proceedings of SPIE[C]. 2003,4721. 212-226.
  • 6James R Buss. Staring infrared panoramic sensor (SIRPS)[A].SPIE [C]. 1998,3436.743 - 762.
  • 7Philippe M Tribolet, Patricia Costa, Fillon P, et al. Large staring arrays at SOFRADIR[A].Proceedings of SPIE[C]. 2003,4820.418-428.
  • 8Jean-Paul Chnmonal, Eric Mottin, Patrick Audebert,et al.1500-element linear MWIR and LWIR HgCdTe arrays for high-resolution imaging[A].SPIE[C]. 1997,3221.384-394.
  • 9Jean-Pierre Chatard. LW MCT IRFPA cost optimization[A].SPIE [C]. 1999,3698.407-419.
  • 10Castelein P.New generation of long linear butted HgCdTe arrays for high resolution infrared imaging[A]. Proceedings of SPIE[C].2003,4820.252-259.

共引文献78

同被引文献22

  • 1时文华,毛容伟,赵雷,罗丽萍,王启明.Fabrication of Ge Nano-Dot Heterojunction Phototransistors for Improved Light Detection at 1.55μm[J].Chinese Physics Letters,2006,23(3):735-737. 被引量:2
  • 2COLVIN V L,SCHLAMP M,ALIVISATOS A.Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer[J].Nature,1994,370:354-356.
  • 3LANDES C,BURDA C,BRAUN M,et al.Photoluminescence of CdSe nanoparticles in the presence of a hole acceptor:n-Butylamine[J].J Phys Chem B,2001,105:2981-2986.
  • 4LANDES C F,BRAUN M,EL-SAYED M A.On the nanoparticle to molecular size transition:fluorescence quenching studies[J].J Phys Chem B,2001,105:10554-10558.
  • 5BEBELAAR D.Time response of various types of photomultipliers and its wavelength dependence in time correlated single-photon counting with an ultimate resolution of 47 ps FWHM[J].Rev Sci Instrum,1986,57:1116-1125.
  • 6REISS P,BLEUSE J,PRON A.Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion[J].Nano Lett,2002,2:781-784.
  • 7SCHMELZ O,MEWS A,BASCHE T,et al.Supramolecular complexes from CdSe nanocrystals and organic fluorophors[J].Langmuir,2001,17:2861-2865.
  • 8WANG X,QU L,ZHANG J,et al.Surface related emission in highly luminescent CdSe quantum dots[J].Nano Lett,2003,3:1103-1106.
  • 9PENG X,SCHLAMP M,KADAVANICH A,et al.Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility[J].J Am Chem Soc,1997,119:7019-7029.
  • 10SYKORA M,PETRUSKA M A,ALSTRUM-ACEVEDO J,et al.Photoinduced charge transfer between CdSe nanocrystal quantum dots and Ru-polypyridine complexes[J].J Am Chem Soc,2006,128:9984-9985.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部