期刊文献+

基于小波神经网络的邮件分类算法研究 被引量:5

A study of classification algorithm for E-mails based on the wavelet neural network
下载PDF
导出
摘要 小波神经网络模型是将小波理论和神经网络结合起来的一种模型。通过对邮件分类问题的分析,采用由伸缩和平移因子决定的小波基函数代替传统的神经元激励函数的小波神经网络的方法,建立了相应的邮件分类的小波神经网络模型。该模型克服了传统BP神经网络参数不足、隐含层单元数目难以确定、收敛速度较慢等缺点。应用结果表明,该算法在邮件分类中能有效减少平均绝对误差,提高查准率,为邮件分类算法研究提供了一种新的方法。 Wavelet neural network is a kind of neural network. This paper analyses the classification for E-mails and sets up a wavelet neural network model of the classification for E-mails. The classification model is based on retract and translation factors instead of conventional neural network function. This model can overcome the shortcomings of BP networks, such as the shortcoming of the parameters of network, the uncertain unit number of the hidden layer, and the slowly learning rate, etc. The simulated results show that the method of classification for E-mails can decrease the average error and improve the accuracy. It can provide a new way for classification.
出处 《成都理工大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第5期581-584,共4页 Journal of Chengdu University of Technology: Science & Technology Edition
基金 国家自然科学基金资助项目(40172096) 霍英东高校青年教师基金资助项目(91020) 高等学校博士点学科专项基金资助项目(20040616005)
关键词 小波神经网络 邮件分类 垃圾邮件 wavelet neural network E-mail classification spam
  • 相关文献

参考文献6

二级参考文献40

  • 1孙小点,任雪梅,陈杰,陶彩霞.连续小波神经网络优化结构研究[J].系统仿真学报,2001,13(z1):156-159. 被引量:8
  • 2张俊艳,魏连伟,韩文秀,邵景力,崔亚丽,张建立.基于RBF神经网络的水文地质参数识别[J].中国工程科学,2004,6(8):74-78. 被引量:7
  • 3徐亚丰,贾连光,王连广,梁力.基于BP网络的HSRC节点骨架曲线的预测[J].东北大学学报(自然科学版),2005,26(1):92-94. 被引量:2
  • 4楼顺天 于卫 等.MATLAB程序设计语言[M].西安电子科技大学出版社,1998.1-193.
  • 5FELDMANN A,GILBERT AC,WILLINGER W,et al.Looking behind and beyond self-similarity:Scaling phenomena in measured WAN traffic[A ].Proceedings of 35th Annual Allerton Conference on Communication,Control,and Computing[C],1997.269-280.
  • 6LELAND WE,TAQQU MS,WILLINGER W,et al.On the self-similar nature of ethernet traffic[J].IEEEE/ACM Transaction on Networking,1994,2(1):1-15.
  • 7WILLINGER W,TAQQU MS,SHERMAN R,et al.Self-Similarity Through High-Variability:Statistical analysis of ethernet LAN traffic at the source level[A].Proceedings of the ACM S IGCOMM'95[C],1995.
  • 8HOMIK KM,STINCHCOME M,WHITE H.Multilayer feedforward network universal approximators[J].Neural Network,1989,2(2):259-366.
  • 9Androutsopoulos, I., Koutsias, J., etc. An Evaluation of Naive Bayesian Anti-Spam Filtering,Proceedings of the workshop on Machine Learning in the New Information Age, 11th European Conference on Machine Learning,Barcelona, Spain, 2000, 9~17.
  • 10MacKay, D. J.CProbable networks and plausible predictionsa review of practical Bayesian methods for supervised neural networks Network: Computation. In Neural Systems.6 (August 1995) 469~505.

共引文献84

同被引文献30

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部