期刊文献+

甲醇自热重整制氢集成式反应器的研究 被引量:4

Hydrogen Production by Methanol Autothermal Reforming in An Integrated Reactor
下载PDF
导出
摘要 设计了一种车载集成式甲醇自热重整制氢反应器,将甲醇-水-空气自热重整制氢反应、一氧化碳变换反应、甲醇-水液体汽化、以及物料间的换热等集成于一个反应器内。自热重整区和变换区内分别装填Cr-Zn催化剂、Cu-Zn-Al变换催化剂。重整器无需外供热和附加保温措施。产物中φ(H2)可达51.1%、φ(CO)低于0.5%(干气);产氢量达到6.0 m3/h(STP);能量转化效率达到0.85。该类反应器通过甲醇的直接燃烧启动,启动时间为3m in,动态应答时间为秒级。该类型甲醇重整器可应用于车载燃料电池氢源系统。 An integrated reformer for methanol reforming to H2 on-board was designed and tested. It put the reactions of methanol-water-air autothermal reforming, CO watergas shift, methanol-water vaporization as well as heat exchange between materials together in it. The Cr-Zn catalyst and Cu-Zn-A1 catalyst were in autothermal reforming chamber and heat exchange chamber, respectively. The reformer did not need external heat and the other measurement of maintaining heat. The results showed that the H2 molar fraction in product could reach 51%, and CO molar fraction was lower than 0. 5 %. Furthermore, the H2 productivity was 6. 0 Nm^3 · h^-1, and the efficiency of energy exchange was 0.85. The reformer started up within 3 minutes by direct burning of methanol, the selectivity time was in second order. The reformer is promising for on board H2 production from methanol autothermal reforming for proton exchange membrane fuel cell.
出处 《天然气化工—C1化学与化工》 CAS CSCD 北大核心 2007年第5期23-27,共5页 Natural Gas Chemical Industry
关键词 集成式反应器 甲醇自热重整 质子交换膜燃料电池 integrated reformer methanol autothermal reforming hydrogen proton exchange membrane fuelcell
  • 相关文献

参考文献12

  • 1Velu S, Suzuki K, Kapoor M P, et al. Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl (Zr)-oxide catalysts [J]. Appl Catal A, 2001,213(1): 47-63.
  • 2Detlef zur Megede. Fuel processors for fuel cell vehicles [J]. J Power Sources, 2002, 106:35-41
  • 3T R Ralph, M P Hogarth. Catalysis for low temperature fuel cells[J]. Platinum Met Rev, 2002,46 (3) :117- 135.
  • 4Edwards N, Ellis S R, Frost J C, et al. On-board hydrogen generation for transport applications : the HotSpot^TM methanol processor [ J ]. J Power Sources, 1998, 71(1-2) :123-128.
  • 5Lindstrom B, Pettersson L J. Development of a methanol fuelled reformer for fuel cell applications[J]. J Power Sources,2003, 118(1-2) : 71-78.
  • 6Geyer H K, Ahluwalia R K, Kumar R. Methanol-Fueled, Polymer Electrolyte Fuel Cell Systems [ A ]. Proceedings of the 31^st IECEC on Dynamic Response of Steam-Reformed[ C ]. Washington DC, USA, 1996, 2 : 1101-1106.
  • 7Alejo L, Lago R, Pena M A, et al. Partial oxidation of methanol to produce hydrogen over Cu-Zn-based catalysts[J]. Appl Catal A, 1997, 162 (1-2):281-297.
  • 8Traxel B E, Hohn K L. Partial oxidation of methanol at millisecond contact times [ J ]. Appl Catal A, 2003, 244 (1) : 129-140.
  • 9Holladay J D, Wang Y, Jones E. Review of developments in portable hydrogen production using microreactor technology [ J ]. Chem Rev, 2004, 104 : 4767-4790.
  • 10Emonts B, Hansen J B, Jorgensen S L, et al. Compact methanol reformer test for fuel-cell powered light-duty vehicles[J]. J Power Source, 1998, 71 (1-2) :288- 293.

二级参考文献8

  • 1[1]Srinivasant S, Velve O A, Manko D J. High energy efficiency and high power density PEMFC-electrode kinetics and mass transport[J]. J Power Sources, 1991, 36(3): 299-320.
  • 2[2]Schmidt V M, Brockerhoff P, Hohlein B, et al. Utilization of methanol for polymer electrolyte fuel cells in mobile systems[J]. J Power Source, 1994, 49(1-3): 299-313.
  • 3[3]Shoesmith J P, Collins R D, Oakley M J, et al. Status of solid polymer fuel cell system development[J]. J Power Source, 1994, 49(1-3):129-142.
  • 4[5]Thomas Rampe, Angelika Heinzel, Bernhard Vogel. Hydrogen generation from biogenic and fossil fuels by autothermal reforming[J]. J Power Sources, 2000, 86(1-2): 536-541.
  • 5[6]Freni S, Calogero G, Cavallaro S. Hydrogen production from methane through catalytic partial oxidation reactions[J]. J Power Sources, 2000, 87(1-2): 28-38.
  • 6[7]Santos A, Menendez M, Santamaria. Partial oxidation of methane to carbon monoxide and hydrogen in a fluidized bed reactor[J]. Catal Today, 1994, 21(2-3): 481-488.
  • 7[8]Zanfir M, Gavriilidis A. Modelling of a catalytic plate reactor for dehydrogenation- combustion coupling[J]. Chem Eng Sci, 2001, 56(8):2671-2683.
  • 8王胜年,王树东,吴迪镛,洪学伦.甲醇自热重整制氢反应分析[J].燃料化学学报,2001,29(3):238-242. 被引量:9

共引文献14

同被引文献53

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部