期刊文献+

Effect of Ⅲ/Ⅴ Ratio of HT-AIN Buffer Layer on Polarity Selection and Electrical Quality of GaN Films Grown by Radio Frequency Molecular Beam Epitaxy 被引量:2

Effect of Ⅲ/Ⅴ Ratio of HT-AIN Buffer Layer on Polarity Selection and Electrical Quality of GaN Films Grown by Radio Frequency Molecular Beam Epitaxy
下载PDF
导出
摘要 We investigate the effect of A/N ratio of the high temperature (HT) AIN buffer layer on polarity selection and electrical quality of GaN films grown by radio frequency molecular beam epitaxy. The results show that low Al/N ratio results in N-polarity GaN films and intermediate Al/N ratio leads to mixed-polarity GaN films with poor electrical quality. GaN films tend to grow with Ga polarity on Al-rich AIN buffer layers. GaN films with different polarities are confirmed by in-situ reflection high-energy electron diffraction during the growth process. Wet chemical etching, together with atomic force microscopy, also proves the polarity assignments. The optimum value for room-temperature Hall mobility of the Ga-polarity GaN film is 703cm^2/V.s, which is superior to the N-polarity and mixed-polarity GaN films. We investigate the effect of A/N ratio of the high temperature (HT) AIN buffer layer on polarity selection and electrical quality of GaN films grown by radio frequency molecular beam epitaxy. The results show that low Al/N ratio results in N-polarity GaN films and intermediate Al/N ratio leads to mixed-polarity GaN films with poor electrical quality. GaN films tend to grow with Ga polarity on Al-rich AIN buffer layers. GaN films with different polarities are confirmed by in-situ reflection high-energy electron diffraction during the growth process. Wet chemical etching, together with atomic force microscopy, also proves the polarity assignments. The optimum value for room-temperature Hall mobility of the Ga-polarity GaN film is 703cm^2/V.s, which is superior to the N-polarity and mixed-polarity GaN films.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2007年第1期240-243,共4页 中国物理快报(英文版)
基金 Supported the National Natural Science Foundation of China under Grant No 10574130.
  • 相关文献

参考文献15

  • 1Chang S J, Chang C S, Su Y K, Chuang R W, Lin Y C, Shei S C, Lo H M, Lin H Y and Ke J C 2003 IEEE J. Quantum Electron. 39 1439
  • 2Zhang N Q, Keller S, Parish G, Heikman S, DenBaars S P and Mishra U K 2000 IEEE Electron. Device Lett. 21 421
  • 3Ohta J, Pujioka H, Oshima M, Pujiwara K and Ishii A 2003 Appl. Phys. Lett. 83 3075
  • 4Smith A R, Feenstra R M, Greve D W, Shin M S, Skowronski M, Neugebauer J and Northrup J E 1998 Appl. Phys. Lett. 72 2114
  • 5Shen X Q, Ide T, Cho S H, Shimizu M, Hara S and Okumura H 2000 Appl. Phys. Lett. 77 4013
  • 6Rouviere J L, Weyher J L, Seelmann-Eggebert M and Porowski S 1998 Appl. Phys. Lett. 73 668
  • 7Sumiya M and Fuke S 2004 MRS Internet J. Nitride Semicond. Res. 9 1
  • 8Huang D, Visconti P, Jones K M, Reshchikov M A, Yun F, Baski A A, King T and Morkoc H 2001 Appl. Phys. Lett. 78 4145
  • 9Shen X Q, Ide T, Cho S H, Shimizu M,Hara S, Okumura H, Sonoda S and Shimizu S 2000 J Cryst. Growth 218 155
  • 10Smith A R, Feenstra R M, Greve D W, Neugebauer J and Northrup J E 1997 Phys. Rev. Lett. 79 3934

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部