期刊文献+

Phase Transition and EOS of Marmatite (Zn0.76Fe0.23S) up to 623K and 17 GPa

Phase Transition and EOS of Marmatite (Zn0.76Fe0.23S) up to 623K and 17 GPa
下载PDF
导出
摘要 In situ energy dispersive x-ray diffraction for natural marmatite (Zn0.76Fe0.23S) is performed up to 17. 7 GPa and 623 K. It is fit, ted by the Birch-Murnaghan equation of state (EOS) that Ko and α0 for marmatite are 85(3)GPa and 0.79(16)*10^-4 K^-1, respectively. Fe^2+ isomorphic replacing to Zn^2+ in natural crystal is responsible for high bulk modulus and thermal expansivity of marmatite. Temperature derivative of bulk modulus (OK/OT)p for marmatite is fitted to be -0.044(23) GPaK^-1. The unambiguous B3-B1 phase boundaries for marmatite are determined to be Pupper(GPa)= 15.50 - 0.016T(℃) and Plower (GPa)=9.94-0.012T(℃) at 300-623K. In situ energy dispersive x-ray diffraction for natural marmatite (Zn0.76Fe0.23S) is performed up to 17. 7 GPa and 623 K. It is fit, ted by the Birch-Murnaghan equation of state (EOS) that Ko and α0 for marmatite are 85(3)GPa and 0.79(16)*10^-4 K^-1, respectively. Fe^2+ isomorphic replacing to Zn^2+ in natural crystal is responsible for high bulk modulus and thermal expansivity of marmatite. Temperature derivative of bulk modulus (OK/OT)p for marmatite is fitted to be -0.044(23) GPaK^-1. The unambiguous B3-B1 phase boundaries for marmatite are determined to be Pupper(GPa)= 15.50 - 0.016T(℃) and Plower (GPa)=9.94-0.012T(℃) at 300-623K.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2007年第1期287-290,共4页 中国物理快报(英文版)
基金 Supported by the National Basic Research Programme of China under Grant No 2005CB724400, the National Natural Science Foundation of China under Grant Nos 10299040 and 40603013, and the Knowledge Innovation Project of Chinese Academy of Sciences under Grant No KJCX2-SW-N20.
  • 相关文献

参考文献22

  • 1Jiang J Z, Gerward L, Frost D, Secco R, Peyronneau J and Olsen J S 1999 J. Appl. Phys. 86 6608
  • 2Qadri S B, Skelton E F, Dinsmore A D, Hu J Z, Kin W J, Nelson C and Ratna B R 2001 J. Appl. Phys. 89 115
  • 3Desgreniers S, Beaulieu L and Lepage I 2000 Phys. Rev. B 61 8726
  • 4Weinstein B A 1977 Solid State Commun. 24 595
  • 5Uchino M, Mashimo T, Kodama M, Kobayashi T, Takasawa E, Sekine T, Noguchi Y, Hikosaka H, Fukuoka K, Syono Y, Kondo T and Yagi T 1999 J. Phys. Chem. Solids 60 827
  • 6Ves S, Schwarz U, Christensen N E, Syassen K and Cardona M 1990 Phys. Rev. B 42 9113
  • 7Zhou Y, Campbell A J and Heinz D L 1991 J. Phys. Chem. Solids 52 821
  • 8Lee G D, Lee M H and Ibm J 1995 Phys. Rev. B 52 1459
  • 9Qadri S B, Skelton E F, Hsu D, Dinslnore A D, Yang J, Gray H F and Ratna B R 1999 Phys. Rev. B 60 9191
  • 10Gao K Y, Karl H, Grosshans I, Hipp W and Stritzker B 2002 Nucl. Instrum. Methods Phys. Res. B 196 68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部