摘要
Rutherford backscattering (RBS)/channelling and high resolution x-ray diffraction (HRXRD) have been used to characterize the tetragonal distortion of a GaN epilayer with four Alx Ga1-xN and single AIN buffer layers grown on a Si (111) substrate by metal-organic vapour phase epitaxy (MOVPE). The results show that a 1000nm GaN epilayer with a perfect crystal quality (Xmin = 1.54%) can be grown on the Si (111) substrate in virtue of multiple buffer layers. Using the RBS/channelling angular scan around an off-normal (1213) axis in the (1010) plane and the conventional HRXRD θ - 20 scans normal to GaN (0002) and (1122) planes at the 0° and 180° azimuth angles, the tetragonal distortion eT, which is caused by the elastic strain in the epilayer and different buffer layers, can be obtained respectively. The two experiments are testified at one result, the tetragonal distortion of GaN epilayer is nearly to a fully relaxed (eT = 0).
Rutherford backscattering (RBS)/channelling and high resolution x-ray diffraction (HRXRD) have been used to characterize the tetragonal distortion of a GaN epilayer with four Alx Ga1-xN and single AIN buffer layers grown on a Si (111) substrate by metal-organic vapour phase epitaxy (MOVPE). The results show that a 1000nm GaN epilayer with a perfect crystal quality (Xmin = 1.54%) can be grown on the Si (111) substrate in virtue of multiple buffer layers. Using the RBS/channelling angular scan around an off-normal (1213) axis in the (1010) plane and the conventional HRXRD θ - 20 scans normal to GaN (0002) and (1122) planes at the 0° and 180° azimuth angles, the tetragonal distortion eT, which is caused by the elastic strain in the epilayer and different buffer layers, can be obtained respectively. The two experiments are testified at one result, the tetragonal distortion of GaN epilayer is nearly to a fully relaxed (eT = 0).
基金
Supported by the National Natural Science Foundation of China under Grant Nos 10375004 and 10575007, and the Bilateral Cooperation between China and Belgium under Grant No BIL04/05.