摘要
We investigate the navigation process on a variant of the Watts-Strogatz small-world network model with local information. In the network construction, each vertex of an N x N square lattice sends out a long-range link with probability p. The other end of the link falls on a randomly chosen vertex with probability proportional to r^-α, where r is the lattice distance between the two vertices, and α ≥ 0. The average actual path length, i.e. the expected number of steps for passing messages between randomly chosen vertex pairs, is found to scale as a power-law function of the network size N^β, except when α is close to a specific value value, which gives the highest efficiency of message navigation. For a finite network, the exponent β depends on both α and p, and p αmin drops to zero at a critical value of p which depends on N. When the network size goes to infinity,β depends only only on α, and αmin is equal to the network dimensionality.
We investigate the navigation process on a variant of the Watts-Strogatz small-world network model with local information. In the network construction, each vertex of an N x N square lattice sends out a long-range link with probability p. The other end of the link falls on a randomly chosen vertex with probability proportional to r^-α, where r is the lattice distance between the two vertices, and α ≥ 0. The average actual path length, i.e. the expected number of steps for passing messages between randomly chosen vertex pairs, is found to scale as a power-law function of the network size N^β, except when α is close to a specific value value, which gives the highest efficiency of message navigation. For a finite network, the exponent β depends on both α and p, and p αmin drops to zero at a critical value of p which depends on N. When the network size goes to infinity,β depends only only on α, and αmin is equal to the network dimensionality.
基金
Supported by the National Natural Science Foundation of China under Grant No 10375008, and the National Basic Research Programme of China under Grant No 2003CB716302