期刊文献+

Multiwavelength All-Optical Clock Recovery of Non-Return-to-Zero Data

Multiwavelength All-Optical Clock Recovery of Non-Return-to-Zero Data
下载PDF
导出
摘要 A novel scheme of all-optical clock recovery from mutiwavelength non-return-to-zero (NRZ) data stream is proposed and demonstrated. The chirp induced by a chirped fibre Bragg grating and a semiconductor optical amplifier is used to enhance the clock. The clock is recovered after injecting the enhanced signal into the scheme based on the stimulated Brillouin scattering. The experiment is carried out and the dual-wavelength clock is recovered. This novel scheme can realize clock recovery of multiwavelength NRZ signal in the total wavelength range of 3.3nm. This clock recovery technology is transparent to the data bit rate and modulation format, also without pattern dependence. A novel scheme of all-optical clock recovery from mutiwavelength non-return-to-zero (NRZ) data stream is proposed and demonstrated. The chirp induced by a chirped fibre Bragg grating and a semiconductor optical amplifier is used to enhance the clock. The clock is recovered after injecting the enhanced signal into the scheme based on the stimulated Brillouin scattering. The experiment is carried out and the dual-wavelength clock is recovered. This novel scheme can realize clock recovery of multiwavelength NRZ signal in the total wavelength range of 3.3nm. This clock recovery technology is transparent to the data bit rate and modulation format, also without pattern dependence.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2007年第4期941-943,共3页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant No 60437010.
关键词 STIMULATED BRILLOUIN-SCATTERING BIT-RATE PERFORMANCE SCHEME STIMULATED BRILLOUIN-SCATTERING BIT-RATE PERFORMANCE SCHEME
  • 相关文献

参考文献10

  • 1Mao W, Al-Mumin M, Wang X H and Li G F 2001 IEEE Photon. Technol. Lett. 13 239
  • 2Yin L N, Yan Y M, Zhou Y F, Wu J and Lin J T 2006 Microwave Opt. Technol. Lett. 48 516
  • 3Jinno M and Matsumoto T 1992 IEEE J. Quantum Electron. 28 895
  • 4Slovak J, Bornholdt C, Kreissl J, Bauer S, Biletzke M, Schlak M and Sartorius B 2006 IEEE Photon. Technol. Lett. 18 844
  • 5Lerber T, Tuominen J, Ludvigsen H, Honkanen S and Kueppers F 2006 IEEE Photon. Technol. Lett. 18 1395
  • 6Butler D L, Wey J S, Chbat M W, Burdge G L and Goldhar J 1995 Opt. Lett. 20 560
  • 7Johnson C, Demarest K, Allen C, Hui R, Peddanarappagari K V and Zhu B 1999 IEEE Photon. Technol. Lett. 11 895
  • 8Liu Y, Chen Y, Tan Z W, Cao J H, Zheng K, Ning T G, Chen T, Dong X W and Jian S S 2005 Chin. Phys. Lett. 22 1944
  • 9Zhang F, Chen Y and Jian S S 2007 Acta Opt. Sin. 27 (accepted) (in Chinese)
  • 10Zhou X, Shalaby H H M, Chao L, Cheng T H and Ye P D 2000 IEEE J. Lightwave Technol. 18 1453

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部