期刊文献+

Mechanical Properties of Single-Walled (5,5) Carbon Nanotubes with Vacancy Defects

Mechanical Properties of Single-Walled (5,5) Carbon Nanotubes with Vacancy Defects
下载PDF
导出
摘要 First-principles simulation is used to investigate the structural and mechanical properties of vacancy defective single-walled (5,5) carbon nanotubes. The relations of the defect concentration, distribution and characteristic of defects to Young's modulus of nanotubes are quantitatively studied. It is found that each dangling-bond structure (per supercell) decreases Young's modulus of nanotube by 6.1% for symmetrical distribution cases. However the concentrative vacancy structure with saturated atoms has less influence on carbon nanotubes. It is suggested that the mechanical properties of carbon nanotubes depend strongly upon the structure and relative position of vacancies in a certain defect concentration. First-principles simulation is used to investigate the structural and mechanical properties of vacancy defective single-walled (5,5) carbon nanotubes. The relations of the defect concentration, distribution and characteristic of defects to Young's modulus of nanotubes are quantitatively studied. It is found that each dangling-bond structure (per supercell) decreases Young's modulus of nanotube by 6.1% for symmetrical distribution cases. However the concentrative vacancy structure with saturated atoms has less influence on carbon nanotubes. It is suggested that the mechanical properties of carbon nanotubes depend strongly upon the structure and relative position of vacancies in a certain defect concentration.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2007年第7期2036-2039,共4页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant No 90505007.
  • 相关文献

参考文献22

  • 1Dekker C 1999 Phys. Today 52 (No 5) 22
  • 2Terrones M, Banhart F, Grobert N, Charlier J C, Terrones H, and Ajayan P 2002 Phys. Rev. Lett. 89 075505
  • 3Mawhinney D B, Naumenko V, Kuznetsova A, Yates J T, Liu J and Smalley R E 2000 Chem. Phys. Lett. 324 213
  • 4Talapatra S, Ganesan P G, Kim T, Vajtai R, Huang M, Shima M, Ramanath G, Srivastava D, Deevi S C and Ajayan P M 2005 Phys. Rev. Lett. 95 097201
  • 5Kis A, Csanyi G, Salvetat J P, Lee T N, Couteau E, Kulik A J, Benoit W, Brugger J, and Forro L 2004 Nature Mater. 3 153
  • 6Crespi V H, Cohen M L, and Rubio A 1997 Phys. Rev. Lett. 79 2093
  • 7Ma Y, Lehtinen P O, Foster A S and Nieminen R M 2004 New J. Phys. 6 68
  • 8Fan Y, Goldsmith B R and Collins P G 2005 Nature Mater. 4 906
  • 9Sammalkorpi M, Krasheninnikov A, Kuronen A, Nordlund K and Kaski K 2004 Phys. Rev. B 70 245416
  • 10Zhang S, Mielke S L, Khare R, Troya D, Ruoff R S, Schatz G C and Belytschko T 2005 Phys. Rev. B 71 115403

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部