期刊文献+

方程△u+f(x,u)=0的极大值原理

The Maximum Principles for the Elliptic Problem △u+f(x,u)=0
下载PDF
导出
摘要 关于二阶椭圆型方程的极值原理,已经有许多结果。对于二阶非线性椭圆型方程,一般说来,通过研究解的泛函的极大值原理来对解的性质进行研究。文章对一类非线性椭圆型方程进行研究,通过构造了一种合适的泛函,得出了方程解的泛函的极大值原理。文中还对方程的各种边值问题的极大值原理进行了讨论。 There are many results about the maximum principles for second elliptic problems. In this paper, we obtain maximum principles for the functions which are defined on solutions of monlinear second order elliptic priblems . The principles can be used to estimate physical quantity.
作者 裴金仙
出处 《太原科技大学学报》 2007年第5期396-398,共3页 Journal of Taiyuan University of Science and Technology
基金 山西省自然科学基金(2007011001)
关键词 极值原理 非线性 椭圆型方程 maximum principle, nonlinear, elliptic equation
  • 相关文献

参考文献5

  • 1PAYNE L.E,STAKGOLD I.Nonlinear problems in nuclear reactor analysis,[J] Proc.Conf.on Nonlinear problems in Physical Sciences and Biology,Springer Lecture Notes in Math,1972,322,298-307.
  • 2PAYNE L.E,STAKGOLD I.On the mean value of the fundamental mode in the fixed membrane problem[J].Appl.Anal.1973 (3):,295-303.
  • 3Schaefer P.W.,Sperb R.P,Maximum principle and bounds in some inhomogeneous elliptic boundary value problems[J].SIAM J.Math.Anal,1977,(8):,871-878.
  • 4R.P.Sperb,Maximum principles and their applications[M].Academic,Press,New York,1981.
  • 5张亚静.非线性散度型方程的极值原理[J].山西大学学报(自然科学版),2000,23(4):283-285. 被引量:2

二级参考文献3

  • 1[1] SCHAEFER P W,SPERB R P. Maximum Principle and Bounds in Some Inhomogeneous Elliptic Boundary Value Problem[J].Siam J Math Anal,1977,8:871-878.
  • 2[2] SCHAEFER P W.Some Maximum Principles for Nonlinear Elliptic Boundary-value Problem[J].Q Appl Math,1977,35:517-523.
  • 3[3] KOMKOV V.Certain Estimates for Solutions of Nonlinear Elliptic Differential Equations Applicable to the Theory of Thin Plates[J].Siam J Appl Math,1975,28:24-34.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部