期刊文献+

2类高阶格式数值测试和比较 被引量:1

Numerical Study of Two High-Order Schemes for Compressible Euler Equation
下载PDF
导出
摘要 通过求解二维Burgers方程初边值问题、二维周期漩涡问题、Richtmyer Meshkov(简称RM)不稳定性问题和Ray-leigh-Taylor(简称RT)不稳定性问题,对五阶FD-WENO格式(简称WENO5)及二阶Godunov格式MUSCL进行了数值测试和比较.所得结果对于求解气体动力学问题及辐射流体力学问题时,怎样恰当地选择数值方法具有一定参考作用. A numerical study is undertaken to compare the fifth-order finite difference weighted essentially non-oscillatory scheme (FD-WEN05) to the second-order Godunov scheme MUSCL (monotonic upstream-centered scheme for conservation laws). For quantitative comparison purpose, these methods are tested on a series of problems whose true solutions are known or can be computed with high accuracy, such as the two-dimensional Burgers initial problems, the two-dimensional periodic vortex problem, Richtmyer-Meshkov instability problems and Rayleigh-Taylor instability problems. The results can be referred to as to how to choose the numerical method when solving the problems of gas dynamics and radiation hydrodynamics.
出处 《吉首大学学报(自然科学版)》 CAS 2007年第4期30-34,共5页 Journal of Jishou University(Natural Sciences Edition)
基金 国家自然科学基金资助项目(10271100) 国家863高技术惯性约束聚变主题资助项目
关键词 WENO格式 Godunov格式 EULER方程 weighted essentially non-oscillatory scheme Godunov scheme Euler equation
  • 相关文献

参考文献12

  • 1VAN LEER B.Towards the Ultimate Conservative Difference Scheme II,Monotonicity and Conservation Combined in a Second Order Scheme[J].J.Com.Phys.,1974,14:361-370.
  • 2VAN LEER B.Towards the Ultimate Conservative Difference Scheme III,Upstream-Centered and Conservation Finite Difference Schemes for Ideal Compressible Flow[J].J.Com.Phys.,1977,23:263.
  • 3VAN LEER B.Towards the Ultimate Conservative Difference Scheme IV,a New Approach to Numerical Convection[J].J.Com.Phys.,1997,23:276.
  • 4VAN LEER B.Towards the Ultimate Conservative Difference Scheme V,a Second Order Sequel to Godunov's Method[J].J.Com.Phys.,1979,32:101.
  • 5BALSARA D,SHU C W.Monotonicity Preserving Weighted Essentially Non-Oscillatory Schemes with Increasingly High Order of Accuracy[J].J.Com.Phys.,2001,160:405-45.
  • 6SHU C W.Essentially Non-Oscillatory Schemes and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws[A].COCKBURN B,JOHNSON C,SHU C W,et al.Advanced Numerical Approximation of Nonlinear Hyperbolic Equations Lecture Notes in Mathematics[C].Springer,1998,1 697:325-432.
  • 7JIANG G,SHU C W.Efficient Implementation of Weighted ENO Schemes[J].J.Com.Phys.,1996,126:202-228.
  • 8COLELLA P,WOODAWARD P R.The Piecewise Parabolic Method(PPM) for Gas-Dynamics Simulations[J].J.Com.Phys.,1984,54:174.
  • 9HARTEN A,OSHER S.Uniformly High Order Accurate Essentially Non-Oscillatory Scheme[J].I SIAM J.Numer.Ana.,1987,24:279-309.
  • 10HARTEN A,ENGQUIST B,OSHE S,et al.Uniformly High Order Essentially Non-Oscillatory Schemes Ⅲ[J].J.Com.Phys.,1987,71:231-303.

同被引文献11

  • 1彭亚绵,闵涛,张世梅,王宝娥.Burgers方程的MOL数值解法[J].西安理工大学学报,2004,20(3):276-279. 被引量:10
  • 2Shen J,Tang T.Spectral and High-order Methods with Applications[M].Beijing:Science Press,2006:302-320.
  • 3Guo B Y.Spectral Methods and Their Applications[M].Hong Kong:World Scientific,1998:278-297.
  • 4Canuto C,Hussaini M Y,Quarteroni A,et al.Spectral Methods in Fluid Dynamics[M].Berlin:Springer-Verlag,1987:243-272.
  • 5Berrut J P,Trefethen L N.Barycentric Lagrange interpolation[J].SIAM Rev,2004,46:501-517.
  • 6Baltensperger R,Trummer R M.Spectral differencing with a twist[J].SIAM J Sci Comput,2003,24:1465-1487.
  • 7Higham N J.The numerical stability of Barycentric Lagrange interpolation[J].IMA J Num Anal,2004,24:547-556.
  • 8Javidi M,Golbabai A.Spectral collocation method for parabolic partial differential equations with Neumann boundary conditions[J].Appl Math Sci,2007 (1):211-218.
  • 9Wang Z Q,Guo B Y.Legendre-Gauss-Radau collocation method for solving initial value problems of first order ordinary differential equations[J].J Sci Comput,2012,52:226-255.
  • 10Guo B Y,Wang Z Q.Legendre-Gauss collocation methods for ordinary differential equations[J].Adv Comput Math,2009,30:249-280.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部