摘要
The proposed prediction model for estimating the maximum rebound ratio was applied to a field explosion test, Mandai test in Singapore. The estimated possible maximum peak particle velocities(PPVs) were compared with the field records. Three of the four available field-recorded PPVs lie exactly below the estimated possible maximum values as expected, while the fourth available field-recorded PPV lies close to and a bit higher than the estimated maximum possible PPV. The comparison results show that the predicted PPVs from the proposed prediction model for the maximum rebound ratio match the field-recorded PPVs better than those from two empirical formulae. The very good agreement between the estimated and field-recorded values validates the proposed prediction model for estimating PPV in a rock mass with a set of joints due to application of a two dimensional compressional wave at the boundary of a tunnel or a borehole.
The proposed prediction model for estimating the maximum rebound ratio was applied to a field explosion test, Mandai test in Singapore. The estimated possible maximum peak particle velocities(PPVs) were compared with the field records. Three of the four available field-recorded PPVs lie exactly below the estimated possible maximum values as expected, while the fourth available field-recorded PPV lies close to and a bit higher than the estimated maximum possible PPV. The comparison results show that the predicted PPVs from the proposed prediction model for the maximum rebound ratio match the field-recorded PPVs better than those from two empirical formulae. The very good agreement between the estimated and field-recorded values validates the proposed prediction model for estimating PPV in a rock mass with a set of joints due to application of a two dimensional compressional wave at the boundary of a tunnel or a borehole.
基金
Project(50278057) supported by the National Natural Science Foundation of China
project(2002CB412703) supported by the Major State Basic Research Development Program of China