期刊文献+

关于变分与互补问题的线性逼近方法的收敛性分析(英文)

On the convergence of the linear approximation methods for variational and complementarity problems
原文传递
导出
摘要 建立了Pans与Chan提出的求解变分不等问题的线性逼近方法的Kantorovich型收敛性理论.对于其特殊情形Newton法,刻划了其收敛速度及误差估计,给出了关于变分不等问题的新型的解的的存在唯一性条件,且为迭代序列的初始选取提供了可靠的依据. This paper thoroughly establishes the Kantorovich-type convergence theories for the linear approximation methods (LAMs) set up by Pang and Chan in 1982 for solving the variational inequality problems. For the important special case Newton method, the convergence rate and error estimate are particularly described in precision and detail. This work, besides giving new existence and uniqueness conditions for the solution of the variational inequality problem, also affords reliable principles for the choices of the starting vectors of the iterations.
出处 《复旦学报(自然科学版)》 CAS CSCD 北大核心 1997年第2期206-218,共13页 Journal of Fudan University:Natural Science
关键词 变分不等式 互补问题 线性逼近 收敛性 variational inequality nonlinear complementarity problem linear approximation method Kantorovich-type convergence analysis
  • 相关文献

参考文献1

  • 1Pang J S,Math Program,1982年,24卷,3期,284页

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部