期刊文献+

Conserved quantities and symmetries related to stochastic Hamiltonian systems

Conserved quantities and symmetries related to stochastic Hamiltonian systems
下载PDF
导出
摘要 In this paper symmetries and conservation laws for stochastic dynamical systems are discussed in detail. Determining equations for infinitesimal approximate symmetries of Ito and Stratonovich dynamical systems are derived. It shows how to derive conserved quantities for stochastic dynamical systems by using their symmetries without recourse to Noether's theorem. In this paper symmetries and conservation laws for stochastic dynamical systems are discussed in detail. Determining equations for infinitesimal approximate symmetries of Ito and Stratonovich dynamical systems are derived. It shows how to derive conserved quantities for stochastic dynamical systems by using their symmetries without recourse to Noether's theorem.
作者 尚玫 梅凤翔
机构地区 Faculty of Science
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第11期3161-3167,共7页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China (Grant Nos 10572021 and 10372053), and Fundamental Research Foundation of Beijing Institute of Technology, China (Grant No BIT-UBF-200507A4206)
关键词 stochastic dynamical systems symmetries and conserved quantities Ito and Stratanovich dynamical systems stochastic dynamical systems, symmetries and conserved quantities, Ito and Stratanovich dynamical systems
  • 相关文献

参考文献27

  • 1Ibragimov N H 1999 Elementary Lie Group Analysis and Ordinary Differential Equations (Chichester: Wiley)
  • 2Misawa T 1994 Phys. Lett. A 195 185
  • 3Misawa T 1994 J. Phys. A: Math. Gen. 27 777
  • 4Albeverio S and Fei S M 1995 J. Phys. A: Math. Gen. 28 6363
  • 5Gaeta G and Quintero N R 1999 J. Phys. A: Math. Gen. 32 8485
  • 6Wafo Soh C and Mahomed F M 2001 J, Phys. A: Math. Gen. 34 177
  • 7Unal G 2003 Nonlinear Dynamics 32 417
  • 8Unal G and Sun J Q 2004 Nonlinear Dynamics 36 107
  • 9Ibragimov N H, Unal G and Jogrcus C 2004 Journal of Mathematical Analysis and Applications 297 152
  • 10Jose J V and Salctan E J 2004 Classical Dynamics: A Contemporary Approach (Beijing: World Scientific)

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部