摘要
An interaction potential of the Ne-HC1 van der Waals complex is obtained by utilizing the Huxley analytic potential function to fit the accurate interaction energy data, which have been computed at the coupled cluster singles and doubles including connected triple excitations level and with the augmented correlation consistent polarized valence quintuple zeta basis set extended with a set of 3s3p2dlflg mid-bond functions [CCSD (T)/aug-cc-pV5Z-33211]. The close coupling calculation of state-to-state partial cross sections for collision of Ne with HC1 is first performed by employing the fitted interaction potential. This calculation is performed at the incident energies: 40, 60, 75 and 100 meV, separately. The effects of the long-range attractive and the short-range anisotropic interactions on the inelastic state-to-state partial cross sections are discussed in detail. Two maxima are present in the rotationally inelastic partial cross sections and they originate from different mechanisms.
An interaction potential of the Ne-HC1 van der Waals complex is obtained by utilizing the Huxley analytic potential function to fit the accurate interaction energy data, which have been computed at the coupled cluster singles and doubles including connected triple excitations level and with the augmented correlation consistent polarized valence quintuple zeta basis set extended with a set of 3s3p2dlflg mid-bond functions [CCSD (T)/aug-cc-pV5Z-33211]. The close coupling calculation of state-to-state partial cross sections for collision of Ne with HC1 is first performed by employing the fitted interaction potential. This calculation is performed at the incident energies: 40, 60, 75 and 100 meV, separately. The effects of the long-range attractive and the short-range anisotropic interactions on the inelastic state-to-state partial cross sections are discussed in detail. Two maxima are present in the rotationally inelastic partial cross sections and they originate from different mechanisms.
基金
Project supported by the National Natural Science Foundation of China (Grant Nos 10676025 and 10574096), the Discipline Foundation of Anqing Teachers College of China (Grant No 044-k06016000007) and the Anhui Provincial Natural Science Foundation of China (Grant No 20050610010).