期刊文献+

一种新的基于语义聚类和图算法的自动图像标注方法 被引量:9

A New Approach for Automatic Image Annotation Based on Semantic Clustering and Graph Algorithm
下载PDF
导出
摘要 针对图像检索中的语义鸿沟问题,提出了一种新颖的自动图像标注方法。该方法首先采用了一种基于软约束的半监督图像聚类算法(SHMRF-Kmeans)对已标注图像的区域进行语义聚类,这种聚类方法可以同时考虑图像的视觉信息和语义信息。并利用图算法——Manifold排序学习算法充分发掘语义概念与区域聚类中心的关系,得到两者的联合概率关系表。然后利用此概率关系表标注未知标注的图像。该方法与以前的方法相比可以更加充分地结合图像的视觉特征和高层语义。通过在通用图像集上的实验结果表明,本文提出的自动图像标注方法是有效的。 A novel automatic image annotation approach is proposed to bridge the semantic gap of content-based image retrieval. Our approach first performs segmentation of images into regions, followed by the clustering of regions to blobs using a semi-supervised image clustering algorithm with soft constraints which utilizing the visual and semantic information of images. And a graph-based algorithm is used to compute the probabilistie relation between concepts and region blobs which can he used to annotate new images. Experiments conducted on standard dataset demonstrate the effectiveness and efficiency of the proposed approach for image annotation.
出处 《中国图象图形学报》 CSCD 北大核心 2007年第2期239-244,共6页 Journal of Image and Graphics
基金 多媒体计算与通信教育部-微软重点实验室开放基金资助项目(05071804) 国家自然科学基金项目(60672056)
关键词 半监督聚类 软约束 图像标注 Manifold排序学习算法 semi-supervised clustering, soft constraints, image annotation, Manifold ranking
  • 相关文献

参考文献12

  • 1Claudio C,Gianluigi C,Raimondo S.Image annotation using SVM[A].In:Proceedings of SPIE-The International Society for Optical Engineering,Internet Imaging[C],California,USA,2004,5304:330 - 338.
  • 2Edward C,Kingshy G,Gerard S,et al.CBSA:content-based soft annotation for multimodal image retrieval using bayes point machines[J].IEEE Transactions on Circuits and Systems for Video Technology,January,2003,13(1):26-38.
  • 3Duygulu P,Barnard K,De F N,et al.Object recognition as machine translation:learning a lexicon for a fixed image vocabulary[A].In:Seventh European Conference on Computer Vision[C],Copenhagen Denmark:Springer,2002,4:97- 112.
  • 4Jeon J,Lavernko V,Manmatha V.Automatic image annotation and retrieval using cross-media relevance models[A].In:Proceedings of the 26th annual international ACM SIGIR conference on Research and development in information retrieval[C],Toronto Canada,2003:119 - 126.
  • 5Carson C,Thomas M,Hellerstein J,et al.Blobworld:A system for region-based image indexing and retrieval[A].In:Third International Conference on Visual Information Systems[C],Amsterdam The Netherlands,1999:509 - 516.
  • 6Zhou D,Bousquet O.Learning with local and global consistency[A].In:Advances in Neural Information Processing Systems[C],Vancouver,British Columbia,Canada,2004:321 - 328.
  • 7Barnard K,Duygulu P.Matching words and pictures[J].Journal of Machine Learning Research,2003,3 (1):1107 - 1135.
  • 8Lin D.Using syntactic dependency as local context to resolve word sense ambiguity[A].In:Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics[C],Madrid,Spain,1997:64 - 71.
  • 9Basu S,Bilenko M,Mooney R J.A probabilistic framework for semisupervised clustering[A].In:Proceedings of the 2004 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining[C],San Francisco,CA,USA,2004:59 - 68.
  • 10Kokare M,Chatterji B N,Biswas P K.Comparison of similarity metrics for texture image retrieval[A].In:IEEE Conference on Convergent Technologies for Asia-Pacific Region[C],Bangalore,India,2003,1(2):571 -575.

同被引文献117

引证文献9

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部