摘要
Das等研究过关于年代更换策略的一种简单模型[1,2],但这个模型不具有现实性.本文考虑的年代更换模型是具有现实意义的.在我们的模型中,元件的寿命T为"功能衰减"变量U和延时变量H之和,即T=U+H.在U和H满足某些条件下,可得出:T∈IFR的结论(引理1).此外,我们得到保证最佳年代更换策略的解的存在性与唯一性的充分条件,但不必要求T∈IFR(定理1).
Das etc researched the simple model^[1-2] about aging replacement policy which can't be implemented. In the paper,the model about aging replacement policy which can be implemented is discussed. In our model,the lifetime T of a component is the sum of "function degradation" variable U and delay time variable H, that is, T = U+ H. Under the certain conditions imposed on U and H ,it can be deduced that T ∈ 1FR (Lemma 1). In addition,with respect to the solution of optimal aging replacement policy we get the sufficient conditions of the existence and uniqueness,in which it is not necessary that T ∈ IFR is requested (Th. 1).
出处
《应用数学》
CSCD
北大核心
2007年第4期633-639,共7页
Mathematica Applicata
基金
重庆市教委基础/应用基础资助项目(KJ060416)
关键词
年代更换模型
最佳策略
延时变量
存在唯一性
Aging replacement model
Optimal policy
Delay time variable
Existence and uniqueness