期刊文献+

系统元件带有延时的最佳年代更换策略 被引量:1

Optimal Age Replacement Policy of Components with Delay Time
下载PDF
导出
摘要 Das等研究过关于年代更换策略的一种简单模型[1,2],但这个模型不具有现实性.本文考虑的年代更换模型是具有现实意义的.在我们的模型中,元件的寿命T为"功能衰减"变量U和延时变量H之和,即T=U+H.在U和H满足某些条件下,可得出:T∈IFR的结论(引理1).此外,我们得到保证最佳年代更换策略的解的存在性与唯一性的充分条件,但不必要求T∈IFR(定理1). Das etc researched the simple model^[1-2] about aging replacement policy which can't be implemented. In the paper,the model about aging replacement policy which can be implemented is discussed. In our model,the lifetime T of a component is the sum of "function degradation" variable U and delay time variable H, that is, T = U+ H. Under the certain conditions imposed on U and H ,it can be deduced that T ∈ 1FR (Lemma 1). In addition,with respect to the solution of optimal aging replacement policy we get the sufficient conditions of the existence and uniqueness,in which it is not necessary that T ∈ IFR is requested (Th. 1).
作者 胡必锦
出处 《应用数学》 CSCD 北大核心 2007年第4期633-639,共7页 Mathematica Applicata
基金 重庆市教委基础/应用基础资助项目(KJ060416)
关键词 年代更换模型 最佳策略 延时变量 存在唯一性 Aging replacement model Optimal policy Delay time variable Existence and uniqueness
  • 相关文献

参考文献5

  • 1Das A N,etc.Age replacement of components during IFR delay time[J].IEEE Trans on Reliability,2004,53:306-312.
  • 2Yeh R H,etc.Optimal age-replacement policy for nonrepairable products under renewing free-replacement warranty[J].IEEE Trans on Reliability;2005,54:92-97.
  • 3Bon J L.etc.Aging properties and series systems[J].J.Appl.Prob,2005,42:279-286.
  • 4Ross S M,etc.On increasing-failure-rate random variables[J].J.Appl.Prob,2005,42:797-809.
  • 5Stoyanov J,etc.Properties of classes of life distribution based on the conditional variance[J].J.Appl.Prob,2004,41:953-960.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部