期刊文献+

广义线性系统基于PI观测器鲁棒极点配置分离原理 被引量:2

Separation Principle for Robust Pole Assignment Based on PI Observers in Descriptor Linear Systems
下载PDF
导出
摘要 对广义线性系统提出了基于全维比例-积分观测器的控制系统设计的鲁棒极点配置分离原理.基于矩阵灵敏度理论证明了如下事实:与状态反馈系统相同的闭环系统极点具有和状态反馈系统极点相同的极点灵敏度,与观测器系统相同的闭环系统极点具有和观测器系统极点相同的极点灵敏度.于是基于全维PI观测器的状态反馈控制器的具有最小灵敏度的鲁棒极点配置可以通过求解两个分开的鲁棒状态反馈极点配置问题实现. A separation principle for robust pole assignment in the full-order proportionalintegral (PI) observer-based control system designs is proposed for descriptor linear systems. It reveals that the two facts:the closed-loop poles which are identical with those in the state feedback control system have the same sensitivities with respect to the perturbation parameters in the open-loop system coefficient matrices as those in the state feedback control system;the closed-loop poles which are identical with those in the observer system have the same sensitivities with respect to the perturbation parameters in the open-loop system coefficient matrices as those in the observer system. Thus, pole assignment with minimum sensitivities in a descriptor linear system using a full-order PI observer-based state feedback controller can be easily realized by solving two separate state feedback robust pole assignment problems.
出处 《应用数学》 CSCD 北大核心 2007年第4期771-776,共6页 Mathematica Applicata
基金 国家自然科学基金资助项目(60374024)
关键词 广义线性系统 鲁棒极点配置 分离原理 Descriptor linear systems Robust pole assignment Separation principle
  • 相关文献

参考文献6

  • 1Kautsky J,Nichols N K,Van Dooren P.Robust pole assignment in linear state feedback[J].Int.J.Control,1985,41:1129-1155.
  • 2Duan G R.Simple algorithm for robust eigenvalue assignment in linear output feedback[J].IEEE Proceeding Part D:Control Theory and Applications,1992,139(5):465-469.
  • 3Duan G R.Robust eigenatructure assignment via dynamical compensators[J].Automatica,1993,29(2):469-474.
  • 4Varga A.A numerically reliable approach to robust pole assignment for descriptor systems[J].Future Generation Computer Systems,2003,19:1221-1230.
  • 5Duan G R,Thompson S.Separation principle for robust pole assignment--an advantage of full-order state observers[J].Proceedings of the 38th Conference on Decision and Control,Phoenix,Arizona,USA,December,1999,76-78.
  • 6吴爱国,段广仁.广义线性系统鲁棒极点配置分离原理[J].系统工程与电子技术,2005,27(10):1785-1787. 被引量:1

二级参考文献5

  • 1Kautsky J, Nichols N K, Van Dooren P. Robust pole assignment in linear state feecback[J]. Int. J. Control, 1985, 41: 1129-1155.
  • 2Duan G R. Simple algorithm for robust eigenvalue assignment in linear output feedback[J ]. IEE Proceeding Part D: Control Theory and Applications, 1992, 139(5): 465 - 469.
  • 3Duan G R. Robust eigenstructure assignment via dynamical compensators[J]. Automatica, 1993, 29(2): 469-474.
  • 4Varga A. A numerically reliable approach to robust pole assignment for descriptor systems[J]. Future Generation Computer Systems,2003, 19: 1221-1230.
  • 5Duan G R, Thompson S. Separation principle for robust pole assignment--an adwantage of full-order state observers[A]. Proceedings of the 38th Conference on Decision and Control [C].Phoenix, Arizona, USA, 1999. 76- 78.

同被引文献31

  • 1张卓奎,陈慧婵.广义离散随机非线性系统的递推算法[J].西安电子科技大学学报,2007,34(2):317-321. 被引量:2
  • 2Shuwen Pan,Hongye Su,Zhitao Liu,et al.UnscentedKalman Filtering Approach for Nonlinear Singular Sys-tems. 11th Int.Conf.Control,Automation,Ro-botics and Vision . 2010
  • 3V.M.Becerra,P.D.Roberts,G.W.Griffiths.Ap-plying the Extended Kalman Filter to Systems Describedby Nonlinear Differential-algebraic Equations. Con-trol Engineering Practice . 2001
  • 4Ravi Kumar Mandela,Raghunathan Rengaswamy,Shankar Narasimhan,et al.Recursive State EstimationTechniques for Nonlinear Differential Algebraic Systems. Chemical Engineering Science . 2010
  • 5Rosenbrock HH.Structural properties of linear dynamical systems. International Journal of Control . 1974
  • 6Nikoukhah R,Willsky A S,Bernard C L.Kalman Filtering and Riccati Equations for Descriptor Systems. IEEE Transactions on Automatic Control . 1992
  • 7Munteanu I, Bratcu A I, Cutululis N A, et al. Optimal control of wind energy systems: Towards a global approach[M]. Berlin, Germany: Springer, 2008.
  • 8Badihi H, Zhang Y, Hong H. Model reference adaptive fault-tolerant control for a wind turbine against actuator faults[C]//2013 Conference on Control and Fault-Tolerant Systems (SysTol). Piscataway, NJ, USA: IEEE, 2013: 498-503.
  • 9Bianchi F D, Battiata H, Mantz R J. Wind turbine control systems principles modelling and gain scheduling design[M]. Berlin, Germany: Springer, 2006.
  • 10Shamma J S, Athans M. Analysis of gain scheduled control for nonlinear plants[J]. IEEE Transactions on Automatic Control, 1990, 35(8): 898-907.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部