摘要
该文建立了Lp(μ)空间上的超Poincare不等式,得到了Lp(μ)上半群的半紧性和紧性的充要条件及相应的扰动结果,同时给出超Poincare不等式成立的一个充分条件,推广了L2(μ)上的相关结论.作为应用,文中最后讨论了黎曼流形上一类非对称扩散算子的本质谱.
The authors establish the super-Poincare inequality on L^p-space with respect to a measure space, and obtain some necessary and sufficient conditions about semicompact and compact property of semigroup and the perturbation result. Meanwhile, a sufficient condition for super-Poincare inequality is shown, which generalizes some known results obtained on the L^2-space. As applications, the essential spectrum of a class of non-symmetric diffusion operators on Riemannian manifold is studied.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2007年第5期781-787,共7页
Acta Mathematica Scientia
基金
国家自然科学基金创新群体研究基金(NSFC10121101)
安徽省教育厅自然科学研究基金(2003KJ165)资助
关键词
超Poincare不等式
紧半群
渐近核
扰动
本质谱
Super-Poincare inequality
Compact semigroup
Asympotic kernel
Perturbation
Essential spectrum.