期刊文献+

动力学群微分表示的计算:以Lorentz群SO(3,1)为例

The Calculation of Differential Representations of Dynamical Groups: Lorentz Group SO(3,1) as an Example
下载PDF
导出
摘要 该文给出了动力学群在群参数空间以及陪集空间上的右、左微分表示和伴随微分表示的符号计算方法.作为例子,计算了Lorentz群SO(3,1)的6-参数和3-参数的右、左及伴随微分表示,这些表示是旋转群SO(3)关于欧拉角和极角的微分表示的相对论性推广.特别,作者给出了伴随微分表示的两种不同的3-参数形式,同时也得到了Wigner小群SO(2,1)和SO(3)的6-参数和3-参数的相应表示.这些表示在相对论性量子陀螺的研究中可得到应用. The authors present a symbolic computation method for calculating the differential representations for dynamical groups, including the right and the left differential representations, and the adjoint differential representations in the group parameter space and in its roset spaces. As an example, the corresponding representations of Lorentz SO(3,1) group with (i-parameters and 3-parameters are calculated. Especially, two different kinds of 3-parameter adjoint differential representations are obtained. At the same time, the right and the left differential representations, and the adjoint differential representations of Wigner's little group SO(2,1) and SO(3) with 6-parameters and 3-parameters are also obtained respectively. These representations are the relativistic generalization of the differential representations of the SO(3) rotation group in the Euler angles and in the polar angles. They may find their applications in the study of relativistic quantum top.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2007年第5期819-829,共11页 Acta Mathematica Scientia
基金 国家自然科学基金(10205007 TY10226033 10175029 10375039 10004012) 国家IHRFL核理论研究基金资助
关键词 动力学群 微分表示 LORENTZ群 陪集空间 Dynamical groups Differential representation Lorentz group Coset space
  • 相关文献

参考文献14

  • 1Bohm A, Ne'eman Y, Barut A. Dynamical Groups and Spectrum Generating Algebras. Singapore: World Scientific, 1988
  • 2Elliott J P, Dawber P G. Symmetry in Physics. London: Macmillan Press Ltd, 1979
  • 3Arima A, Iachello F. Collective nuclear states as representations of a SU(6)group. Phys Rev Lett, 1975, 35: 1069
  • 4Arima A, Iachello F. Interacting boson model of collective states. Ⅰ The vibrational limit. Ann Phys (N.Y.), 1976, 99: 253
  • 5Arima A, Iachello F. Interacting boson model of collective nuclear states. Ⅱ The rotational limit. Ann Phys (N.Y.), 1978, 111: 201
  • 6Arima A, Iachello F. Interacting boson model of collective nuclear states. Ⅳ The O(6) limit. Ann. Phys.(N.Y.), 1979, 123: 468
  • 7Arima A, Iachello F. The interacting boson model. Annu Rev Nucl Part Sci, 1981,31:75
  • 8Zhang S C. A unified theory based on SO(5) symmetry of superconductivity and antiferromagnetism. Science, 1997, 275: 1089
  • 9Guidry M, Wu L A, Sun Y, Wu C L. SU(4) model of high-temperature superconductivity and antiferromagnetism. Phys Rev B, 2001, 63: 134516
  • 10Wang S J, Zhao D, Luo H G, Cen L X, Jia C L. Exact solution to the von Neumann equation of the quantum characteristic function of the two-level Jaynes-Cummings model. Phys Rev A, 2001, 64: 052102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部