摘要
应用马尔可夫过程向前向后鞅分解方法,将Lyons-Zheng的平均上穿次数估计由对称马尔可夫过程情形推广到非对称情形,由此得到Meyer-Zheng拓朴的紧性判别准则,并用一个具体例子说明如何估计关键的上穿次数.
The author extends the cross-estimate of Lyons-Zheng Markov processes from the symmetric case to the general stationary situation. The main tool is the forward-backward martingale decomposition. As a corollary the author obtains a tightness result for laws of Markov processes. Finally the author gives an example to show how to obtain the crucial cross-estimate.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2007年第5期923-930,共8页
Acta Mathematica Scientia
基金
国家自然科学基金(10271-01)资助
关键词
向前向后鞅分解
拟对称
上穿估计
胎紧性
Forward-backward martingale decomposition
Cross-estimate
Quasi-symmetric
Tightness