期刊文献+

非对称马氏过程上穿估计和胎紧性

Cross-estimate and Tightness for Non-symmetric Markov Processes
下载PDF
导出
摘要 应用马尔可夫过程向前向后鞅分解方法,将Lyons-Zheng的平均上穿次数估计由对称马尔可夫过程情形推广到非对称情形,由此得到Meyer-Zheng拓朴的紧性判别准则,并用一个具体例子说明如何估计关键的上穿次数. The author extends the cross-estimate of Lyons-Zheng Markov processes from the symmetric case to the general stationary situation. The main tool is the forward-backward martingale decomposition. As a corollary the author obtains a tightness result for laws of Markov processes. Finally the author gives an example to show how to obtain the crucial cross-estimate.
作者 蒋义文
机构地区 军事经济学院
出处 《数学物理学报(A辑)》 CSCD 北大核心 2007年第5期923-930,共8页 Acta Mathematica Scientia
基金 国家自然科学基金(10271-01)资助
关键词 向前向后鞅分解 拟对称 上穿估计 胎紧性 Forward-backward martingale decomposition Cross-estimate Quasi-symmetric Tightness
  • 相关文献

参考文献10

  • 1Lyons T J, Zheng W A. A crossing estimate for the canonical process on a Dirichlet spacd and a tightness result. Asterique, 1988, 157-158: 249-271 (Colloque P. Levy)
  • 2Ancona A, Lyons R, Peres Y. Crossing estimates and convergence of Direchlet functions along random walk and diffusion paths. Ann Probab, 1999, 27: 970-989
  • 3Chen Z -Q, Fitzsimmons P J, Song R. Crossing estimates for symmetric Markov processes. Probab Theory Rel Fields, 2001, 120: 68-84
  • 4Meyer P A, Zheng W A. Construction du processes de Nelson reversible. Sem Probab ⅩⅨ, Lect Notes in Math, 1984, (1123): 12-26
  • 5Takeda M. On a martingale method for symmetric diffusion processes and its applications. Osaka J Math, 1989, 26: 605-623
  • 6Bertoin J. Les processus de Dirichlet en tant qu'espace de Banach. Stochastics, 1986, 18: 155-168
  • 7Kato T. Perturbation Theory For Linear Operators. 2nd ed. New York, Berlin: Springer-Verlag, 1984
  • 8Ma Z M, Rockner M. An Introduction to the Theory of (Non-Symmetric) Dirichlet Forms. New York, Berlin: Springer-Verlag, 1992
  • 9Wielens N. The essential self-adjointness of generalized Schrodinger operators. J Funct Anal, 1985, 61: 98-115
  • 10Wu L. Forward-backward martingale decomposition and compactness results for additive functionals of stationary ergodic Markov processes. Ann Inst Henri Poincare, 1999, 35(2): 121-141

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部