期刊文献+

一类捕食-食饵模型正平衡解的整体分歧

GLOBAL BIFURCATION OF POSITIVE STEADY-STATE SOLUTIONS FOR A CLASS OF PREDATOR-PREY MODEL
原文传递
导出
摘要 讨论了一类改进的Leslie-Gower和Holling-TypeⅡ型捕食-食饵模型对应的平衡态系统正解的结构.以捕食者的出生率b为分歧参数,利用局部分歧理论和整体分歧理论,得到了此平衡态系统正解的存在性与参数b的关系,即当b适当大时,该平衡态系统具有共存正解. In this paper the structure of a predator-prey model with modified Leslie- Gower and Holling-Type Ⅱ schemes is investigated. By use of the theorems of local bifurcation and global bifurcation theory, we get the ralationship between the existence of positive solutions for the system and bifurcation parameter b-the birth-rate of predator v, that is, the system has coexistence positive solutions when b is in a proper range.
出处 《系统科学与数学》 CSCD 北大核心 2007年第5期791-800,共10页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(10571115)资助项目.
关键词 捕食-食饵模型 主特征值 局部分歧 整体分歧 Predator-prey model, principal eigenvalue, local bifurcation, global bifurcation.
  • 相关文献

参考文献6

  • 1Li L and Logan R. Positive solutions to general elliptic competition models. Differential and Interal Equations, 1991, 4(4): 817-834.
  • 2Aziz-Alaoui M A and Okiye M Daher. Boundedness and global stability for a predator- prey model with modified Leslie-Gower and Holling-type schemes. Lett. Appl. Math., 2003, 16: 1069, 1075.
  • 3Peng R, Wang M X. On multiplicity and stability of positive solutions of diffusive prey-predator model. Math. Anal. Appl., 2006, 316: 256-268.
  • 4Smoller J. Shock Waves and Reaction-diffusion Equations. New York, Spring-Verlag, 1983.
  • 5Hess P. Periodic-Parabolic Boundary Value Problems and Positivity. Pitman Res. Notes Math. Ser. 247, Longman Scientific and Technical, New York, 1991.
  • 6Wu J H. Global bifurcation of coexistence state for the competion model in the chemostat. Nonlinear Anal., 2000, 39: 817-835.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部