期刊文献+

图像法获取犬^(18)F-FDG PET/CT显像的输入函数

Input functions derived from ^(18)F-FDG PET/CT imaging in canines
下载PDF
导出
摘要 目的比较^(18)F-FDG PET 图像法和动脉采血法获取输入函数的差别,寻求图像法获取输入函数的最佳部位。方法 5条犬均进行股动脉连续采血和心腔及大血管^(18)F-FDG PET 动态显像,获得动脉血浆输入函数和心腔及大血管区域显像的输入函数,比较不同输入函数计算的曲线下面积(AUC)及通过 Patlak 方法计算犬心肌的抑制指数(Ki)。结果心腔和大血管^(18)F-FDG PET 图像获得的输入函数与动脉采血法计算的 AUC 有很好的相关性(r≥0.97),其中采用主动脉弓(AC)和降主动脉(DA)区域的输入函数获得的心肌 FDG 代谢 Ki 与动脉采血法获得的值一致(两者比值分别为1.0±0.1和1.1±0.1)。结论采用 AC 和 DA 区域获得输入函数较适合进行无创的定量分析。 Objective The input functions are of necessity in quantitative PET imaging. In this study the authors tried to derive non-invasively the input functions from canine ^18F-FDG PET/CT scans, as compared with standardized input functions determined invasively from serial arterial plasma sampling. Methods Five dogs underwent serial PET/CT scans using dynamic scanning protocol after ^18F-FDG administration. Meanwhile, continuous arteries blood samples were collected through catheters inserted into femoral arteries of the dogs. Image derived input functions (IDIF) were obtained using ROI defined on dynamic PET/CT images over various cardiovascular structures such as left ventricle ( LV ), right ventricle ( RV ), right atria (RA), aortic arch (AC), ascending aorta (AA) and descending aorta (DA). Area under curve (AUC) method was used to calculate each input function from arterial plasma sampling. Canine myocardial inhibition constant (Ki) values were estimated using Patlak graphical analyses. Results IDIF from ^18F-FDG PET/CT scans were significantly correlated with input functions derived from arterial plasma sampling using AUC (r≥0.97). When AC and DA regions were chosen for the calculation, the mean Ki estimated thereby using IDIF were almost identical to those using input functions from artery blood sampling analyses ( the ratios between two sets of Ki being 1.0 ± 0.1 and 1.1 ± 0.1 respectively). Conclusion It might be feasible to use IDIF derived from ROIs over AC and DA on a dynamic ^18 F-FDG PET/CT scan, as a non-invasive procedure, for quantitative analyses.
出处 《中华核医学杂志》 CAS CSCD 北大核心 2007年第5期308-310,共3页 Chinese Journal of Nuclear Medicine
关键词 体层摄影术 发射型计算机 体层摄影术 X线计算机 质量控制 脱氧葡萄糖 Tomography, emission-computed Tomography, X-ray computed Quality control Deoxyglucose
  • 相关文献

参考文献7

  • 1van der Weerdt AP, Klein LJ, Boellaard R, et al. Image-derived input function for determination of MRGlu in cardiac ^18F-FDG PET scans. J Nuel Med, 2001,42: 1622-1629.
  • 2Gambhir SS, Schwaiger M, Huang SC, et al. Simple noninvasive quantification method for measuring myocardial glucose utilization in humans employing positron emission tomography and ^18F-deoxyglucose. J Nucl Med, 1989, 30: 359-366.
  • 3Fang YH, Kao T, Liu RS, et al. Estimating the input function noninvasively for FDG-PET quantification with multiple linear regression analysis: simulation and verification with in vivo data. Eur J Nucl Med Mol Imaging, 2004, 31 : 692-702.
  • 4付占立,王荣福.FDG PET显像的定量及半定量分析[J].中华核医学杂志,2004,24(5):313-317. 被引量:11
  • 5Hoekstra C J, Hoekstra OS, Lammertsma AA. On the use of image-derived input functions in oncologic ^18F-fluorodeoxyglucose positron emission tomography studies. Eur J Nucl Med, 1999, 26: 1489-1492.
  • 6Takikawa S, Dhawan V, Spetsieris P, et al. Noninvasive quantitative fluorodeoxyglucose PET studies with an estimated input function derived from a population based arterial blood curve. Radiology, 1993, 188: 131-136.
  • 7刘平安,黄钢.FDG/PET的绝对定量分析[J].上海第二医科大学学报,2005,25(12):1296-1299. 被引量:2

二级参考文献50

  • 1Cunningham VJ,Gunn RN,Matthews JC.Quantification in PET for research in harmacology and drug development[ J].Nucl Med Commun,2004,25(7):643-646.
  • 2Wienhard K.Measurement of glucose consumption using [ 18F ]fluorodeoxyglucose [ J ].Methods,2002,27 (3):218-225.
  • 3Phelps ME,Huang SC,Hoffman E J,et al.Tomographic measurement of local cerebral glucose metabolic rate in man with (18F) fluorodeoxyglucose:validation of method [ J].Ann Neuro,1979,6(5):371-388.
  • 4Takikawa S,Dhawan V,Spetsieris P,et al.Noninvasive quantitative fluorodeoxyglucose PET studies with an estimated input function derived from a population based arterial blood curve[ J].Radiology,1993,188(1):131-136.
  • 5Feng DG,Wong KP,Wu CM,et al.A technique for extracting physiological parameters and the required input function simultaneously from PET image measurements:theory and simulation study [ J ].IEEE Trans Inform Technol Biomed,1997,1 (4):243-254.
  • 6Chen K,Bandy D,Reiman E,et al.Noninvasive quantification of the cerebral metabolic rate for glucose using positron emission tomography,18F-fluorodeoxyglucose,the Patlak method,and an imagederived input function[ J].J Cereb Blood Flow Metab,1998,18(7):716-723.
  • 7Fang YH,Kao T,Liu RS,et al.Estimating the input function noninvasively for FDG-PET quantification with multiple linear regression analysis:simulation and verification with in vivo data [ J ].Eur J Nucl Med Mol Imaging,2004,31 (5):692-702.
  • 8Sokoloff L,Reivich M,Kennedy C,et al.The[ 14C] deoxyglucose method for the easurement of local cerebral glucose utilization:theory,procedure,and normal values in the conscious and anesthetized albino rat[J].J Neurochem,1977,28(5):897-916.
  • 9Kuwabara H,Evans AC,Gjedde A.Michaelis-Menten constraints improved cerebral glucose metabolism and regional lumped constant measurements with [ 18F ] fluorodeoxyglucose [ J ].J Cereb Blood Flow Metab,1990,10 (2):180-189.
  • 10Reivich M,Alavi A,Wolf A,et al.Glucose metabolic rate kinetic model parameter determination in humans:the lumped constants and rate constants for [ 18 F ] fluorodeoxyglucose and [ 11 C ] deoxyglucose[J].JCereb Blood Flow Metab,1985,5(2):179-192.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部