期刊文献+

基于粒子滤波的移动机器人定位关键技术研究综述 被引量:13

Survey on some key technologies of mobile robot localization based on particle filter
下载PDF
导出
摘要 针对粒子滤波固有的问题,结合在移动机器人蒙特卡罗定位中的最新应用成果,分别从建议分布的选择、重采样策略的改进、有效推理的执行、自适应机制的引入、与其他方法的集成等几个方面对其当前研究的关键技术进行了归纳总结,并对该研究领域需要解决的研究难点进行了分析,展望了进一步研究的方向。 Aimed at the inherent deficiency in particle filter and based on the up-to-date research about Monte Carlo localization for mobile robot, some key technologies in current research were respectively summarized from the aspect of the choice of proposal distribution, the improvement of resampling strategy, the implement of effective inference, the introduce of adaptive mechanism and the integration with other methods. At the same time, the main challenges that need to be solved in this field were analyzed and some future trends about the technology of these difficulties were also presented.
出处 《计算机应用研究》 CSCD 北大核心 2007年第11期9-14,共6页 Application Research of Computers
基金 国家自然科学基金重点资助项目(60234030)
关键词 移动机器人 蒙特卡罗定位 粒子滤波 mobile robot Monte Carlo localization(MCL) particle filter(PF)
  • 相关文献

参考文献59

  • 1COX I J.Blanche:an experiment in guidance and navigation of an autonomous robot vehicle[J].IEEE Transactions on Robotics and Automation,1991,7(2):193-204.
  • 2FOX D,BURGARD W,THRUN S.Markov localization for mobile robot in dynamic environments[J].Journal of Artificial Intelligence Research,1999,11(1):391-427.
  • 3LEONARD J J,DURRANT-WHYTE H F.Mobile robot localization by tracking geometric beacons[J].IEEE Transactions on Robotics and Automation,1991,7(3):376-382.
  • 4FOX D.Markov localization:a probabilistic framework for mobile robot localization and navigation[D].Bonn,Germany:University of Bonn,1998.
  • 5JENSFELT P,CHRISTENSEN H I.Active global localization for a mobile robot using multiple hypothesis tracking[J].IEEE Transactions on Robotics and Automation,2001,17(2):748-760.
  • 6DELLAERT F,BURGARD W,FOX D,et al.Monte carlo localization for mobile robots[C]//Proc of the IEEE International Conference on Robotics and Automation.Detroit:[s.n.],1999:1322-1328.
  • 7GORDON N J,SALMOND D J,SMITH A F M.Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J].IEEE Proceedings on Radar and Signal Processing,1993,140(2):107-113.
  • 8ARULAMPALAM M S,MASKELL S,GORDON N,et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Transactions on Signal Processing,2002,50(20):174-188.
  • 9DOUCET A,GODSILL S J,ANDRIEU C.On sequential Monte Carlo sampling methods for Bayesian filtering[J].Statistics and Computing,2000,10(3):197-208.
  • 10LIU J S,CHEN R.Sequential Monte Carlo methods for dynamical systems[J].Journal of American Statistical Association,1998,93(5):1032-1044.

二级参考文献21

  • 1VERMA V, LANGFORD J, SIMMONS R. Non-parametric fault identification for space rovers [ C ]//Proc of the 6 th Int Symposium on Artificial Intelligence, Robotics and Automation in Space. [ s. l.]:[s.n. ] ,2001.
  • 2GORDON N, SALMOND D, EWING C. Bayesian state estimation for tracking and guidance using the bootstrap filter [ J ]. J of Guidance Control and Dynamics, 1995,18(6): 1434 - 1443.
  • 3RUBIN D. Comment on ' The calculation of posterior distributions by data augmentation' by TANNER M A WONG W H [ J ]. J of the American Statistical Association, 1987,82:543- 546.
  • 4GILKS W R, BERZUINI C. Following a moving target-monte carlo inference for dynamic Bayesian models [ J] . J of the Royal Statistical Society B ,2001,63( 1 ): 127 - 146.
  • 5CLAPP T C. December statistical methods for the processing of communiaations data [D].Cambridge,UK:University of Cambridge,2000.
  • 6PITT M, SHEPHARD N.Filtering via simulation:Auxiliary particle filters [ J ]. J of the American Statistical Association, 1999,94 (446):590 - 599.
  • 7HIGUCHI T. Monte Carlo filtering using genetics algorithm operators [J]. J of Statistical Computation and Simulation, 1997,59(1): 1 - 23.
  • 8GORDON N,SALMOND D,SMITH A F M.Novel approach to nonlinear/non-Gaussian Bayesian state estimation [ J ]. IEEE proceedings-F, 1993,140(2): 107 - 113.
  • 9CRISAN D, DOUCET A. A survey of convergence results on particle filtering methods for practitioners [ J ]. IEEE Trans on Signal Processing, 2002,50(3): 736 - 746.
  • 10CASELLA G, ROBERT C. Rao-Blackwellisation of sampling schemes [ J] . Biometrika ,1996,83(1) : 81-94.

共引文献49

同被引文献196

引证文献13

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部