期刊文献+

利用影响因子遗传算法优化前馈神经网络 被引量:6

Optimization of feedforward neural network by genetic algorithm with influence factor
下载PDF
导出
摘要 提出了一种带有影响因子的改进遗传算法并以此来优化前馈神经网络。染色体的每个基因都有一个影响因子,其不同取值体现了基因对整条染色体的不同影响程度。在遗传进化过程中,通过影响因子等遗传操作以达到对前馈神经网络的权值、阈值和结构优化的目的。仿真实验表明,该算法能够快速地确定神经网络的结构并且有效地提高了神经网络的收敛速度。 An improved genetic algorithm with influence factor was proposed to optimize feedforward neural network. There was an influence factor in each gene and different value of influence factor represents different influence to chromosome. In the process of genetic evolution, the goal of the optimization of weights, thresholds and network structure of feedforward neural network was achieved through genetic operation on influence factor etc. The simulation experiments show that this algorithm can determine the network structure of neural network quickly and improve convergence speed of neural network effectively.
出处 《计算机应用研究》 CSCD 北大核心 2007年第11期103-105,共3页 Application Research of Computers
基金 国防基础预研基金资助项目(S0500A001) 江苏省高校自然科学指导性计划项目(05JKD520050)
关键词 影响因子 改进遗传算法 前馈神经网络 优化设计 influence factor improved genetic algorithm feedforward neural network(FNN) optimization
  • 相关文献

参考文献6

  • 1HOLLAND J H.Adaptation in natural and artificial systems:an introductory analysis with applications to biology,control,and artificial intelligence[M].2nd ed.Cambridge,MA:MIT Press,1992.
  • 2文绍纯,罗飞,付连续.遗传算法在人工神经网络中的应用综述[J].计算技术与自动化,2001,20(2):1-5. 被引量:20
  • 3LING S H,LAM H K,LEUNG F H F.A variable-parameter neural network trained by improved genetic algorithm and its application[C]//Proc of International Joint Conference on Neural Networks.Montreal:[s.n.],2005:1343-1348.
  • 4杨会志.基于互补遗传算子的前馈神经网络三阶段学习方法[J].计算机工程与应用,2005,41(17):88-89. 被引量:1
  • 5LEUNG F H F,LAM H K,LING S H,et al.Turning of the structure and parameters of a neural network using an improved genetic algorithm[J].IEEE Transactions on Neural Networks,2003,14(1):79-88.
  • 6GARY G Y,LU Hai-ming.Hierarchical genetic algorithm based neural network design[C]//Proc of the 1st IEEE Symp Combination of Evolutionary Computation and Neural Network.2000:168-175.

二级参考文献11

共引文献19

同被引文献59

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部