摘要
利用范数形式的锥拉伸与压缩不动点定理,对一类四阶奇异超线性微分方程边值问题做了研究,得到C^2[0,1]正解与C^3[0,1]正解存在的充分必要条件,也得到C^2[0,1]正解的不可比较性等解的性质.
This paper investigates a class of fourth order singular sublinear boundary value problems. A necessary and sufficient condition for the existence of C^2 [0, 1] positive solutions as well as C^3[0, 1] positive solutions is given by using fixed point theorem of cone expansion of norm type. We also obtaied the incomparability of C^2 [0, 1] positive solutions.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2007年第6期1425-1434,共10页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金(10471075)
山东省自然科学基金(Y2006A04)
高教博士点专项科研基金(20060446001)
关键词
奇异边值问题
四阶超线性
正解
singular boundary value problem
fourth order superlinearity
positive solution