期刊文献+

蚁群算法在煤与瓦斯突出预测中的应用 被引量:4

Application of ACA on Coal and Gas Outburst Forecasting
下载PDF
导出
摘要 煤与瓦斯突出预测在矿井的安全生产中具有重要影响;蚁群算法是最新提出的新型寻优策略,具有良好的克服局部极值、获得全局极值的能力;通过对蚁群算法和模糊聚类算法的深入研究提出了一种新的蚁群-模糊聚类预测算法,利用改进的自适应调整信息素的蚁群算法计算出模糊聚类的个数和初始聚类中心,再利用模糊聚类算法对煤与瓦斯突出进行预测;对平八矿历年煤与瓦斯突出数据进行验证预测的结果表明,该方法与传统的模糊聚类预测方法相比具有较强的自适应能力和较好的预测效果。 Forecasting of coal and gas outburst impacts on safety production of pits greatly. Based on the individual local searching the ant colony algorithm (AcA) is an up--to--date proposed optimal strategy, which possesses good capability to avoid the local extremum and obtain the global extremum. By lucubrating the ant colony algorithm (ACA) and fuzzy clustering method (FCM), a new forecasting algorithm based on ACA--fuzzy clustering method is put forward in which the number of FCM and the incipient clustering center of FCM are obtained by ACA of improved self--adaptived regulative pheromone, then the fuzzy clustering algorithm using improved ACA is applied to coal and gas outburst forecasting. Applying the presented forecasting method to the yearly outburst data of Pingdingshan coal mine No. 8, shows that comparing with traditional FCM forecasting method, the presented forecasting method has better adaptive ability and can give better forecasting result.
出处 《计算机测量与控制》 CSCD 2007年第10期1289-1291,共3页 Computer Measurement &Control
关键词 煤与瓦斯突出 预测 蚁群算法 数据聚类 模糊C均值 蚁群一模糊聚类算法 coal and gas outburst forecasting ant colony algorithm (ACA) fuzzy clustering method (FCM) ACA-fuzzy cluste-ring algorithm
  • 相关文献

参考文献10

二级参考文献6

  • 1Guo De-yong, Song Guang-tui.Research on cool structure indices to coal and gas outbursts in Pingdingshan Mine Area, China-Journal of Coal Science&Engineering ( China )2002 ( 1 ).
  • 2郭德勇,1996年
  • 3丁国瑜,活断层分段.原则、方法及应用,1993年,4页
  • 4团体著者,1:200万中国煤层瓦斯地质图编制,1992年,21页
  • 5团体著者,瓦斯地质概论,1990年,183页
  • 6彭立世,瓦斯地质,1985年,创刊号,53页

共引文献140

同被引文献36

引证文献4

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部