期刊文献+

快速实现数字仿生电路设计的自适应遗传算法 被引量:6

Self-adaptive Genetic Algorithm to Design Efficiently Digital Evolvable Hardware
下载PDF
导出
摘要 采用演化硬件技术快速实现数字仿生电路的设计是演化硬件一个重要的研究方向;对演化算法的改进是提高演化速率和减少计算机计算负荷的重要方法;借鉴演化策略和模拟退火算法的思想以及Levi提出的HereBoy算法,提出了具有自适应能力的增强型演化算法;通过实验发现,该算法在演化相同的数字逻辑电路中,明显地提高了演化的速度,缩短了演化时间,提高了进化设计的速度、规模和优化程度。 To implement the digital bionic circuit based on evolvable hardware is one of important research area. The important approach to improve the speed of evolution and shorten the time of evolution is to improve the genetic algorithm. Based on HereBoy algorithm, the en-hanced genetic algorithm which references on evolution strategy (ES) and Simulated Annealing is proposed. The experiment results show that the speed of evolution is accelerated and the time of evolution is shorten. Then, the scale and structure of circuit are improved.
出处 《计算机测量与控制》 CSCD 2007年第10期1359-1360,1399,共3页 Computer Measurement &Control
基金 航空科学基金资助项目(04I52068)
关键词 演化硬件 遗传算法 自适应算法 数字仿生电路 evolvable hardware, genetic algorithm, self--adaptive algorithm, digital bionic circuit
  • 相关文献

参考文献5

二级参考文献17

  • 1[4]陈国良,王煦法,庄镇泉,王东生.遗传算法及其应用.北京:人民邮电出版社,1999.
  • 2[1]Thompson A, et al.. Explorations in Design Space: Unconventional Electronics Design Through Ariticial Evolution [J]. IEEE Trans on Evolutionary Computation,1999,3(3):167~196.
  • 3[5]Koza J. R, et al..Automated Synthesis of Analog Electrical Circuits by Means of Genetic Programming [J]. IEEE Trans on Evolutionary Computation,1997,1(2):109~128.
  • 4[6]Lohn J.D.,Colombano S.P..A Circuit Representation Technique for Automated Circuit Design [J]. IEEE Trans on Evolutionary Computation,1999,3(3):205~219.
  • 5Fonseca C M,Fleming P J.An overview of evolutionary algorithms in multi-objective optimization[J].Evolutionary Computation,1995,3(1):1-16.
  • 6Leung Y W,Wang Y P.Multiobjective programming using uniform design and genetic algorithm[J].IEEE Trans Systems,Man and Cybernetics-Part C,2000,30(3):293-304.
  • 7Schaffer J D.Multiobjective optimization with vector evaluated genetic algorithms[A].Proc of the first int.Conf.on Genetic Algorithms[C].Lawrence:Erlbaum,1985.93-100.
  • 8Kursawe F.A variant of evolution strategies for vector quantization[A].Parallel Problem solving from Nature[C].Berlin:Springer-Verlag,1991.193-197.
  • 9Ishibuchi H,Murata T.A multi-objective genetic local search algorithm and its application to flowshop scheduling[J].IEEE Trans.Systems,Man and Cybernetics-Part C,1998,28(8):392-403.
  • 10HereBoy L D.A fast evolutionary algorithm [A].Pro.of the 2nd NASA/DoD Evolvable Hardware Workshop [C],2000,17-24.

共引文献9

同被引文献55

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部