摘要
k-prototypes是目前处理数值属性和分类属性混合数据主要的聚类算法,但其聚类结果对初值有明显的依赖性。对k-prototypes初值选取方法进行了分析和研究,提出一种新的改进方法。该方法有更高的稳定性和较强的伸缩性,可减少一定程度的上随机性。实际数据集仿真结果表明,改进算法是正确和有效的。
The k-prototypes algorithm has become popular technique in solving mixed numeric and categorical data clustering problems in different application domains. However, it requires random selection of initial points for the clusters. So it is obvious that outputs are especially sensitive to initial. Different initial points often lead to considerable distinct clustering results. The method of random selection is analysed and a method of searching initial starting points is proposed through grouping data sets. Experiments show that new initialization method leads to better accurate and scalable.
出处
《计算机工程与设计》
CSCD
北大核心
2007年第20期4850-4852,共3页
Computer Engineering and Design
基金
国家自然科学基金项目(70171033)
江苏省高校自然科学基础研究基金项目(07KJ520216)
江苏省计算机处理技术重点实验室基金项目(X2100112049811)
徐州师范大学青年科研基金项目(03X1B18)