期刊文献+

基于时序离群检测的新的分段方法 被引量:3

New segment method of temporal data for outlier detection
下载PDF
导出
摘要 在对时序数据进行离群检测之前,一般先将原时序数据划分为若干个子序列,以便降低计算复杂度。现有的子序列划分方法一般是依据应用要求进行,而在某些情况下应用要求无法转换为有效的子序列划分方法。因此,提出从时序数据自身特点出发,得到突变系数和重要点,依据重要点和突变系数的新的划分方法,并以微软的股票数据进行测试。实验结果表明,分段方法不依赖于应用要求,具有简单、直观的特点,与相关算法相比,具有更高的检测精度。 General approaches for outlier detection need to divide temporal data into sub-sequences so as to reduce complexity. The existing methods divide temporal data by application, which is not available on some occasions. A new segment method based on the properties of temporal data is proposed, which divided temporal data by combining important point with their breaking factor (BF). Microsoft stock price series are used for testing. The results show that the segment method is simple, intuitive, independent of application, and outperforms relevant method.
出处 《计算机工程与设计》 CSCD 北大核心 2007年第20期4875-4877,共3页 Computer Engineering and Design
基金 江苏省高校自然科学基金项目(05KJB520017)
关键词 时序数据 突变系数 重要点 分段 离群模式 temporal data breaking factor important point segment outlying patterns
  • 相关文献

参考文献7

  • 1Han J,Kamber M.Data mining:Concepts and techniques[M].Beijing:China Machine Press,2001.
  • 2陆声链,黄万华,林士敏.基于线性形态的时间序列异常模式挖掘[J].计算机与数字工程,2005,33(1):53-55. 被引量:1
  • 3郑斌祥,杜秀华,席裕庚.一种时序数据的离群数据挖掘新算法[J].控制与决策,2002,17(3):324-327. 被引量:14
  • 4Pratt K B,Fink E.Search for patterns in compressed time series[J].International Journal of Image and Graphics,2002,2 (1):89-106.
  • 5Keogh E J,Chakrabarti K,Pazzani M J,et al.Dimensionality Reduction for fast similarity search in large time series databases[J].Knowl Inf Syst,2000,(3):263-286.
  • 6Ramaswamy S,Rastogi R,Shim K.Efficient algorithms for mining outliers from large data sets[J].ACM Sigmoid Record,2000,29(2):427-438.
  • 7Breunig M,Kriegel H P,Ng R.LOF:Identifying density-based local outliers[C].ACM SIGMOD Conference Proceedings.Dallas,Texas:ACM Press,2000:93-104.

二级参考文献8

  • 1B. B. Xia. Similarity Search in Time Series Data Sets[ C]. M Sc Thesis, Nov:Simon Fraser University, 1997:1-50.
  • 2Peng Changshing, Wang Haixun, Zhang Sylvia R, et al. Landmarks: A New Modd for Similarity - Based Pattern Querying in Times Series Databases [ C ]. In Procl6th IEEE International Conference on Data Engineering, 2000: 675-693.
  • 3Fayyad U, Piatetsky-Shapiro G, Smyth P. From data mining to knowledge discovery: An overview[A]. Advances in Knowledge Discovery and Data Mining[C]. USA:AAAI/MIT Press,1996.
  • 4Barnet V, Lewis T. Outliers in statistical data[M]. New York: John Wiley & Sons,1994.
  • 5Edwin Knorr, Roymond Ng. Algorithms for mining distance-based outliers in large databases[A]. Proc of the VLDB Conf[C]. New York:1998.392-403.
  • 6A Arning, Rakesh Agrawal, P Raghavan. A linear method for deviation detection in large database[A]. Int Conf on Knowledge Discovery in Databases and Data Mining[C]. Portland,1996.164-169.
  • 7N Roussopoulos, S Kelley, F Vincent. Nearest neighbour queries[A]. Proc of ACM SIGMOD[C]. San Jose: ACM Press,1995.71-79.
  • 8姜跃.基于云有序概念层次树的时间序列距离计算模型[J].云南大学学报(自然科学版),2003,25(2):115-120. 被引量:3

共引文献13

同被引文献76

引证文献3

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部