期刊文献+

基于广义最小二乘法的系统模型辨识及应用 被引量:13

Systematic Model Identification and Application Based on Generalized Least Square Method
下载PDF
导出
摘要 为了给控制系统设计提供一个有力的依据,提出了一种基于广义最小二乘法的模型参数辨识方法。首先,由CV I结合PCL-1800高速数据采集卡对被辨识对象输出进行数据采集,获得大量实用的观测数据,在完成数据截取、滤波、归一化等预处理后,对预处理后的数据按照广义最小二乘法进行模型辨识——先引入一个白化滤波器,把相关噪声转换为白噪声,基于对观测数据先进行一次滤波处理,然后利用普通最小二乘法对滤波后的数据进行辨识。为了证明该方法的有效性,采用该文方法对某系统的直流力矩电机进行建模研究,实际结果表明该方法辨识精度高,应用性强。 In order to provide the design of the controlling system with a strong basis,this article proposes a model parameter identification method on the basis of generalized least square method.Firstly,combining CVI with PCL-1800,the high-speed DAS card,and using them to adopt data from the output signals of the identified subject and obtain a great number of practical observation data.After the data preprocessing,such as: data interception,filtering and normalization,according to the theory of generalized least square method to carry out the model identification of the preprocessed data--first,introduce a whitening filter to transform the correlated noise into the white noise.Then on the basis of the first filter disposal of the observational data,the least square method can be used to indentify the disposed data.In order to test the effectiveness of the method introduced in this article,it is adopted to conduct modeling research of the direct current torque motor of some system.The actual result indicates that the method is accurate and applicable.
出处 《计算机仿真》 CSCD 2007年第10期89-91,168,共4页 Computer Simulation
关键词 广义最小二乘法 模型辨识 数据采集 直流力矩电机 Generalized least square method Model identification Data adoption Direct current torque motor
  • 相关文献

参考文献7

  • 1[美]GAF塞伯.线性回归分析[M].北京:科学出版社,1987.
  • 2方胜彦.现代控制理论[M].北京:科学出版社,1984.164-170.
  • 3J J E Slotine, W Li. Applied nonlinear control[ M]. Englewood Cliffs,USA : Prentice - Hall,1991.
  • 4G F Mauer. A fuzzy logic controller for ABS brakingsystem[ J ]. IEEE Trans Fuzzy Systems, 1995,3.(4) :381 - 388.
  • 5M Hojati, S Gazor. Hybrid adaptive fuzzy identification and control of nonlinear systems[J]. Trans Fuzzy Systems,2002, 10(2) :198 -210.
  • 6E P Box. Time Series Analysis, Forecasting and Control[ M]. SanFranciso : HoldenDay,1970.
  • 7Keigo Watanabe. A fuzzy - gaussian neural network and its application to mobile robot control[J]. IEEE Trans ControlSystems Technology, 1996,4(2) : 193 - 199.

共引文献1

同被引文献90

引证文献13

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部