期刊文献+

基于免疫记忆的蚁群算法 被引量:2

An Immune Memory-Based Ant Colony Algorithm
下载PDF
导出
摘要 充分利用前期迭代中解的信息是构造高效蚁群算法实现的关键之一。文中把免疫记忆和克隆选择的思想引入蚁群算法,提出了基于免疫记忆的蚁群算法(IMBACA)。算法通过在原有蚁群模型上增加一个免疫记忆库,将记忆库中的解对应为免疫记忆细胞(及其产生的抗体),将问题对应为抗原,并借鉴克隆选择和免疫记忆的思想进行解的构造和信息素更新。算法从解的质量和时间方面与传统蚁群算法进行了比较,实验结果表明,所提出的IMBACA算法可明显提高传统蚁群算法的性能,同时也为解决其他组合优化问题提出了一个新的思路。 Taking full advantage of the information of the previous solutions is one of the keys for constructing highly effective implementation of ant colony algorithm. This paper proposes an Immune Memory-Based Ant Colony Algorithm(IMBACA) by introducing the idea of immune memory and clone selection into ant colony algorithm.IMBACA adds an immune memory library to the ant colony model,regarding the solutions in the immune memory library as antibodies and the problem as antigen. It uses the above idea for solution construction and pheromone concentration update.IMBACA is compared to the traditional ant colony algorithm in terms of both solution quality and speed.Experimental results indicate that the proposed algorithm can evidently improve the performance of the traditional ant colony algorithm.It also provides a new idea for solving other combinational optimization problems.
出处 《计算机仿真》 CSCD 2007年第10期165-168,共4页 Computer Simulation
关键词 免疫记忆 克隆选择 蚁群算法 Immune memory Clone selection Ant colony algorithm
  • 相关文献

参考文献10

  • 1A Colomi, M Dorigo, V Maniezzo. Distributed optimization by ant colonies[C]. Proceedings of ECAL 91 - European Conference on Artificial Life,Paris, France: 1991. 134 - 142.
  • 2M Dorigo, V Maniezzo, A Colomi. The ant system: optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man&Cybernetics B, 1996,26 (2) :29 - 41.
  • 3丁建立,陈增强,袁著祉.遗传算法与蚂蚁算法的融合[J].计算机研究与发展,2003,40(9):1351-1356. 被引量:287
  • 4M Dorigo,T Stutzle. The Ant Colony Optimization Metaheuristic Algorithms,Applications and Advances[R]. Tech. Rep. IRIDIA - 2000 - 32 ( University Libre de Bruxelles, 2000).
  • 5M Guntsch, M Middendorf. A population based approach for ACO[C]. in S. Cagnoni et al., (eds.): Applications of Evolutionary Computing- EvoWorkshops2002, LNCS, No: 2279, Springer Verlag, 2002. 72 - 81.
  • 6Adnan Acan. An External Memory Implementation in Ant Colony Optimization[J]. ANTS 2004, LNCS 3172, 2004. 73 - 82.
  • 7de Castro,Von Zuben. Artificial Immune Systems : Part Ⅰ- Basic Theory And Applications[ R]. Technical Report,TR DCA 01/99, December, 1999.
  • 8焦李成,杜海峰.人工免疫系统进展与展望[J].电子学报,2003,31(10):1540-1548. 被引量:224
  • 9Leandro N de Castro and Fernando J Von Zuben. Learning and Optimization. Using Clonal Selection Principle[J]. IEEE Transactions on Evolutionary Computation,2002, 6 (3) :239 - 251.
  • 10A Hone, J Kelsey and J Timmis. Chasing chaos[J]. IEEE. In R. Sarker et al., editors,Proc. Congress on Evolutionary Computation,2003, 1 : 413 - 419.

二级参考文献67

  • 1戴汝为,王珏.关于智能系统的综合集成[J].科学通报,1993,38(14):1249-1256. 被引量:52
  • 2戴汝为,王珏.巨型智能系统的探讨[J].自动化学报,1993,19(6):645-655. 被引量:39
  • 3陆德源.现代免疫学[M].上海:上海科学技术出版社,1998.14-16.
  • 4学科交叉和技术应用专门小组(美).学科交叉和技术应用[R].北京:科学出版社,1994.43.
  • 5Marco Dorigo, Gambardella, Luca Maria. Ant colonies for the traveling salesman problem. Biosystems, 1997, 43(2): 73~81.
  • 6Marco Dorigo, Gambardelh, Luca Maria. Ant colony system: A cooperative learning approach to the traveling salesaum problem. IEEE Trans on Evolutionary Computation, 1997, 1(1) : 53~66.
  • 7Marco Dorigo, Eric Bonabeau, Theranlaz Guy. Ant algorithms and stigmergy. Future Generation Computer System, 2000, 16(8) : 851~871.
  • 8Thomas Stutzle, Holger H Hoos et al. MAX-MIN ant system. Future Generation Computer System, 2000, 16(8) : 889~914.
  • 9Marcus Randall, Andrew Lewis. A parallel implementation of ant colony optimization. Journal of Parallel and Distributed Computing, 2002, 62(9): 1421~1432.
  • 10M N O Sadiku. Artificial Intelligence [ J ]. IEEE Potentials, 1989, 8(2) :35 - 39.

共引文献509

同被引文献17

  • 1胡小兵,黄席樾,张著洪.一种新的自适应蚁群算法及其应用[J].计算机仿真,2004,21(6):108-111. 被引量:19
  • 2胡纯德,祝延军,高随祥.基于人工免疫算法和蚁群算法求解旅行商问题[J].计算机工程与应用,2004,40(34):60-63. 被引量:13
  • 3宋晓江,卢俊宇,隋明磊.基于免疫蚁群算法的Job-shop调度问题[J].计算机应用,2007,27(5):1183-1186. 被引量:10
  • 4HUNT J E,COOKE D E.Learning using an artificial immune system[J].Journal of Network Computer Applications,1996,19(2):189-212.
  • 5DORIGO M,GAMBARDELLA L M.Ant colony system:a cooperative learning approach to the traveling salesman problem[J].IEEE Trans on Evolutionary Computation,1997,1(1):53-66.
  • 6DORIGO M,MANIEZZO V,COLOMI A.The ant system:optimization by a colony of cooperating agents[J].IEEE Trans on Systems,Man,and Cybernetics:Part B,1996,26(1):29-41.
  • 7DORIGO M,STUTZLE T.Ant colony optimization[M].[S.l.]:The MIT Press,2004.
  • 8ZHOU Ai-min,KANG Li-shan,YAN Zhen-yu.Solving dynamic TSP with evolutionary approach in real-time[C]//Proc of Congress on Evolutionary Computation.2003:951-957.
  • 9BARAGLIA R,HIDALGO J I,PEREGO R.A hybrid heuristic for the traveling salesman problem[J].IEEE Trans on Evolutionary Computation,2001,5(6):613-622.
  • 10DORIGO M, MANIEZZO V. The ant system:Optimization by a colony of cooperating agents [ J ]. IEEE Transactions onSystem, Man, and Cybernetics-Part B, 1996,26 ( 1 ) :29-42.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部